A straight long wire of resistance R, radius a and length L. It carries a constant current I.

Determine the direction of the Poynting vector \vec{S} at X.

A) The direction of \vec{S} is \leftarrow.

B) The direction of \vec{S} is \uparrow.

C) The direction of \vec{S} is \rightarrow.

D) The direction of \vec{S} is \downarrow.
\(\vec{E} \) is along the direction of \(I \). At \(X \), using the right-hand-rule, one finds that \(\vec{B} \) is pointing out of the paper. Thus \(\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \), and it is pointing downward, or pointing radially inward.

Answer **D**.

34.04-02 `Poynting Vector at a Conducting Surface` 2004-11-9