I is flowing along the positive y-axis in yz-plane at $x = 0$. The current direction is shown by arrows in the current sheet. At some instant after turning on I, the front of the \vec{B} field passes window $ABCD$ with speed v as shown in the figure.

Determine the direction of \vec{E} at A'.

A) The direction of \vec{E} is \uparrow.
B) The direction of \vec{E} is \rightarrow.
C) The direction of \vec{E} is \downarrow.
D) The direction of \vec{E} is \leftarrow.
Faraday’s law: \(\mathcal{E} = \int \vec{E} \cdot d\vec{s} = -\frac{d\phi}{dt} \); \(\mathcal{E} = EL \) and \(\phi = BLx \). Faraday’s law implies that the induced emf is out of the window, or the induced field \(\vec{E} \) is along \(AD \), i.e. it is down.

Answer C.

34.05-02’Plane’EM’Waves 2004-3-24