A light ray passes through a slab with index of refraction n_2, which is submerged in a liquid with index of refraction $n_1 = n_3 = 1.2$.

Case A: $n_2 = 1.5$.

Case B: $n_2 = n_2' = 2.0$.

Assuming the incident angle of case B θ_1' is the same as θ_1 of case A, compare θ_3' of case B with θ_3 of case A.

A) $\theta_3' > \theta_3$

B) $\theta_3' = \theta_3$

C) $\theta_3' < \theta_3$
Based on Snell’s law and the set up, \(n_1 \sin \theta_1 = n_2 \sin \theta_2 = n_3 \sin \theta_3 \).

Since \(n_3 = n_1 \), so \(\theta_3 = \theta_1 \). Similarly, \(\theta'_3 = \theta'_1 = \theta_1 \). So \(\theta'_3 = \theta_3 \).

Answer B.

35.04-03 Light Passing Through a Slab02 2004-3-24