Given: \(t = 1.6 \mu \), \(\lambda = 0.5 \mu \).

Determine number of dark fringes in the interval \(OA \). The dark fringe at \(O \) is the first fringe. There after a dark fringe is included in the count only when the minimum point is included.

A) \(N_{dark} = 5 \)

B) \(N_{dark} = 6 \)

C) \(N_{dark} = 7 \)

D) \(N_{dark} = 8 \)
\[N_{dark} = \text{Integer} \left(\frac{\phi}{2\pi} + \frac{1}{2} \right), \text{ with } \phi = \phi_{path} + |\phi_{refl1} - \phi_{refl2}| \text{ and “floor or integerize”: e.g. floor(3.9) = 3. Therefore} \]

\[
\frac{\phi}{2\pi} = \frac{2t}{\lambda} + \frac{1}{2} = \frac{2 \times 1.6}{0.5} + 0.5 = 6.9
\]

\[N_{dark} = \text{Integer}(6.9 + 0.5) = 7. \]

Answer C.

37.06-02 Counting Dark Fringes 2004-3-24