The mass of the worker \(m_1 = 50 \text{ kg} \). The mass of the block at the end of the rope, \(m_2 = 100 \text{ kg} \).

\[
\begin{array}{c}
\text{T} \\
\text{a}
\end{array}
\begin{array}{c}
\text{T} \\
\text{a}
\end{array}
\begin{array}{c}
m_2 \quad \text{a}
\end{array}
\begin{array}{c}
m_1 \quad \text{a}
\end{array}
\]

Determine the acceleration.

A) \[a = \frac{m_2}{m_1} g = 2g \]

B) \[a = \frac{m_2 - m_1}{m_1} g = g \]

C) \[a = \frac{m_2 - m_1}{m_1 + m_2} g = \frac{1}{3}g \]

Applying “\(F = ma \)” on the \(m_1 + m_2 \) mass system.

The net force is \(m_2 g - m_1 g = (m_1 + m_2)a \). This leads to

\[a = \frac{m_2 - m_1}{m_1 + m_2} g = \frac{1}{3}g. \]

Answer C.

05.07-08’The’ascending’worker 2004-3-24