Mike (200 lb, 8 ft/s) Gonzales (100 lb, 16 ft/s)

Mike (200 lb, 8 ft/s) Pancho (400 lb, 4 ft/s)

Who will be more effective in stopping and hurting Mike?

A) stopping: Gonzales and hurting: Gonzales.
B) stopping: Pancho and hurting: Pancho.
C) stopping: both and hurting: Gonzales.
D) stopping: both and hurting: Pancho.

The sum of the initial momenta equals the final momentum of the two athletes who are now together; i.e.,

\[m_1 v_1 + m_2 v_2 = (m_1 + m_2) v_f. \]

From Mike: \(p = m v = 1600 \text{ lbf ft/s} \).
Gonzales: \(p = 1600 \text{ lbf ft/s} \).
So for both cases the sum of initial momentum vectors is 0, so \(v_f = 0 \).
Both cases are equally effective in stopping Mike.

The kinetic energy, \(K = \frac{m v^2}{2} = \frac{p^2}{2m} \).
Gonzales’ weight is 4 times lighter than that of poncho.
Having the same momentum, Gonzales’ kinetic energy is 4 times greater.
Upon collision, the kinetic energy is dissipated through work done on the opponent’s body.
Thus \(K = F s \), where \(F \) is the average force exerted on Mike, \(s \) is the distance of compression.
The greater the kinetic energy, the stronger the force and farther the compression is expected.
In turn the collision hurts Mike more.
Answer C.

09.03-01’Tackle 2006-10-10