A projectile trajectory has a maximum height h, a range R. The mass is m and the initial speed v_0. The angle between the initial velocity vector and the horizontal direction is θ.

![Diagram of projectile motion](image)

Determine the angular momentum ℓ at P with respect to O.

A) $\ell = \frac{R m v_{0x}}{2} = \frac{R m v_0 \cos \theta}{2}$.

B) $\ell = R m v_{0y} = R m v_0 \sin \theta$.

C) $\ell = h m v_{0x} = h m v_0 \cos \theta$.

By inspection, at P the momentum vector is $m v_{0x}$.

It is along the horizontal direction.

The lever arm is the perpendicular distance from O to the momentum vector, which is h.

So the angular momentum is $\ell = h m v_{0x}$.

Answer C.

11.03-02 ‘Angular Momentum at P about O 2004-3-24