Two masses, m_1 and m_2, are initially at a radius of $\frac{R}{2}$. They are rotating about the axis AA' with an angular velocity ω_i.

Then they are released to a radius of R.

Determine their new angular velocity, ω_f, after release. Assume the process is releasing m_1 and m_2 does not lead to a change in the angular momentum.

A) $\omega_f = 4\omega_i$.
B) $\omega_f = 2\omega_i$.
C) $\omega_f = \frac{\omega_i}{2}$.
D) $\omega_f = \frac{\omega_i}{4}$.

Conservation of angular momentum give, $I_i \omega_i = I_f \omega_f$, so $\omega_f = \frac{I_i}{I_f} \omega_i$.

But “$I = \sum m r^2$”. When r is doubled, I is increasing by a factor of 4.

This leads to $\omega_f = \frac{\omega_i}{4}$.

Answer D.

11.05-01 ‘Two Masses Sliding outwards’ 2004-3-24