Given: A metal bar with mass \(m_1 \) and length \(L \). The pivot point is at \(P \), a distance \(\overline{AP} = \frac{L}{4} \), from the end. Mass \(m_2 \) is attached to the other end, at \(B \). The period of oscillation may be determined by

the general expression, \(T = 2\pi \sqrt{\frac{I}{mgb}} \), where \(m \) is

mass of the system, \(I \), moment of inertia about the pivot point, and \(b \) the distance between the pivot point and the center gravity.

Consider the case \(m_1 = m_2 \). Choose one

A) \(m = m_1 + m_2 \) and \(b = \frac{L}{2} \).

B) \(m = m_1 + m_2 \) and \(b = \frac{3L}{4} \).

C) \(m = m_2 \) and \(b = \frac{L}{2} \).

D) \(m = m_2 \) and \(b = \frac{3L}{4} \).

Mass of the compound system, \(m = m_1 + m_2 \). By inspection, the center of mass this system is at a distance \(\frac{L}{4} \) from \(m_2 \), so \(b = \frac{L}{2} \).

Answer A.