A circular disk is suspended by a wire attached to the top of some fixed support. When the disk is twisted through some small angle \(\theta \), the twisted wire exerts a restoring torque on the body which satisfies \(\tau = I \alpha = I \frac{d^2 \theta}{dt^2} = -\kappa \theta \), where \(\kappa \) is referred to as the torsion constant of the wire.

Find the period of the oscillation.

\[
\begin{align*}
A) \quad T &= \sqrt{\frac{I}{\kappa}}. \\
B) \quad T &= 2\pi \sqrt{\frac{I}{\kappa}}. \\
C) \quad T &= \sqrt{\frac{\kappa}{I}}. \\
D) \quad T &= 2\pi \sqrt{\frac{\kappa}{I}}.
\end{align*}
\]

Present equation of motion implies that, \(\omega = \frac{\kappa}{I} \), in turn: \(T = 2\pi \sqrt{\frac{I}{\kappa}} \).

Answer B.

13.04-04 Torsional Pendulum 2004-3-24