A U tube is filled with a liquid and water. Here the water is denser than the liquid. See the sketch. The horizontal line \(\overline{AB} \) is at the level of the water-liquid interface.

\[h_1 \]

\[L \]

\[h_2 \]

Compare the pressure \(P_2 \), which the water column exerts on the liquid at the interface, and the pressure \(P_1 \), which the liquid column at the left tube above the line \(\overline{AB} \) exerts on the liquid below it.

A) \(P_1 < P_2 \).
B) \(P_1 = P_2 \).
C) \(P_1 > P_2 \).

Denote \(P_0 \) to be the atmospheric pressure.
At point \(C \), which is at the bottom of the U-tube and it is a static point, the pressure from the left must be the same as the pressure from the right. This implies that

\[P_0 + \rho_{liquid} g (h_1 + L + h_2) = P_0 + \rho_{water} g L + \rho_{liquid} g h_2. \quad (1) \]

Since

\[P_1 = P_0 + \rho_{water} g L \]

and

\[P_2 = P_0 + \rho_{liquid} g (h_1 + L), \]

we see Eq. (1) implies

\[P_1 = P_2. \]

Answer B

15.02-04 Two Liquids in a U-Tubes 2007-4-26