Consider the superposition of two traveling waves
1. \(y_1 = A_0 \sin\left(k x - \omega t \right) \).
2. \(y_2 = A_0 \sin\left(k x + \omega t \right) \).
The amplitude vanishes only at which of the following values of \(k x \)?

A) \(k x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots \)

B) \(k x = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \ldots \)

C) \(k x = 0, \pi, 2\pi, 3\pi, \ldots \)

D) \(k x = 0, 2\pi, 4\pi, \ldots \)

Using
\[
\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},
\]

\(y = y_1 + y_2 = 2 A_0 \sin k x \cos \omega t \).

The zeros of the amplitude function occurs at \(k x = 0, \pi, 2\pi \) etc.

Answer C

18.01-02‘Standing’Waves 2004-3-24