A rod with linear charge density $\lambda < 0$ and length ℓ lies along the x-axes with its left-hand end a distance d from the origin.

By inspection \vec{E} is pointing along the positive x-axes, since the charge on the rod is negative $\lambda < 0$.

What is the magnitude of the electric field at the origin?

A) $||\vec{E}|| = k \lambda \int_d^{d+\ell} \frac{1}{x^2} \, dx$

B) $||\vec{E}|| = k \lambda \int_d^{\ell} \frac{1}{x^2} \, dx$

C) $||\vec{E}|| = \frac{k}{\lambda} \int_d^{d+\ell} \frac{1}{x^2} \, dx$

D) $||\vec{E}|| = \frac{k}{\lambda} \int_d^{\ell} \frac{1}{x^2} \, dx$

Since $\Delta E = k \frac{\Delta Q}{x^2}$ and $\Delta Q = \lambda \Delta x$

\[E = \int \Delta E \]

\[= k \lambda \int_d^{d+\ell} \frac{1}{x^2} \, dx. \]

Answer A.

23.05-01′Electric Field due to a Charged Rod′ 2004-3-24