An ungrounded spherical capacitor has a sphere and a concentric shell. Both are conductors. The charge on the sphere is \(+Q \). The net charge on the shell is zero.

Find the potential \(V_0 \) at the origin.

A) \(V_0 = 0 \)
B) \(V_0 = k \frac{Q}{a} \)
C) \(V_0 = k Q \left(\frac{1}{a} - \frac{1}{b} + \frac{1}{c} \right) \)

There are 3 concentric spherical charge distributions:

The superposition principle implies that at \(O \)

\[
V_O = V_a + V_b + V_c = k Q \left(\frac{1}{a} - \frac{1}{b} + \frac{1}{c} \right).
\]

Answer C.

26.02-03 `Potential at O of an Ungrounded System` 2004-3-24