Given: A cubic network has identical resistors, each with a resistance \(r \). A current \(I \) enters the network at \(A \) and leaves at \(G \).

Find current \(I_1 \) and \(I_2 \) in terms of the total current \(I \) through the network.

A) \(I_1 = \frac{I}{2} \) and \(I_2 = \frac{I}{4} \).

B) \(I_1 = \frac{I}{3} \) and \(I_2 = \frac{I}{3} \).

C) \(I_1 = \frac{I}{3} \) and \(I_2 = \frac{I}{6} \).

By symmetry, at \(A \), \(I \) is equally divided into 3 equal branches. So \(I_1 = \frac{I}{3} \). By symmetry, at \(B \), \(I_1 \) is equally divided into 2 equal branches. So \(I_2 = \frac{I}{2} = \frac{I}{6} \).

Answer C.