Given: A cubic network has identical resistors, each with a resistance \(r \). A current \(I \) enters the network at \(A \) and leaves at \(G \).

Find the network resistance \(r_{total} \) in terms an individual resistor \(r \).

\[
\begin{align*}
A) \quad r_{total} &= \frac{2r}{3} \\
B) \quad r_{total} &= r \\
C) \quad r_{total} &= 2r \\
D) \quad r_{total} &= \frac{4r}{3} \\
E) \quad r_{total} &= \frac{5r}{6}
\end{align*}
\]

By symmetry, at \(A \), \(I \) is equally divided into 3 equal branches and the potential at the junctions \(B, E, \) and \(D \) are the same, the these points can be joined together without changing the network resistance \(r_{total} \). The same is true at the junctions \(F, C, \) and \(H \). The redrawn network is shown below.

Answer E. \(r_{total} = \frac{1r}{3} + \frac{1r}{6} + \frac{1r}{3} = \frac{5r}{6} \).

28.03-05’A’Cubic’Network 2004-10-22