Given: Three conductors (same length, \(L \)) have the shape of an equilateral triangle (whose sides are of length \(\ell_3 \)), a ring (whose radius is of length \(r \)), a square (whose sides are of length \(\ell_4 \)).

These conductor’s lengths are all equal (perimeters: \(L = 3 \ell_3 = 2 \pi r = 4 \ell_4 \)). All conductors carry the same current \(I \).

Select the correct comparison for the magnitude of the magnetic field at the center points \(P \) of the current loops shown above.

A) \(B_{\text{square}} > B_{\text{triangle}} > B_{\text{ring}} \) \quad B) \(B_{\text{triangle}} > B_{\text{ring}} > B_{\text{square}} \)

C) \(B_{\text{ring}} > B_{\text{triangle}} > B_{\text{square}} \) \quad D) \(B_{\text{triangle}} > B_{\text{square}} > B_{\text{ring}} \)

E) \(B_{\text{square}} > B_{\text{ring}} > B_{\text{triangle}} \)

Using \(B = \frac{\mu_0 I}{4 \pi a} \int_{\theta_1}^{\theta_2} \sin \theta \, d\theta \), at point \(P \), we have

Triangle: \(B_{\text{triangle}} = \frac{9}{2 \pi} \frac{\mu_0 I}{\ell_3} \approx 1.4324 \frac{\mu_0 I}{\ell_3} \), largest

Square: \(B_{\text{square}} = \frac{8 \sqrt{2}}{3 \pi} \frac{\mu_0 I}{\ell_3} \approx 1.2004 \frac{\mu_0 I}{\ell_3} \)

Ring: \(B_{\text{ring}} = \frac{\pi}{3} \frac{\mu_0 I}{\ell_3} \approx 1.0472 \frac{\mu_0 I}{\ell_3} \), smallest

Therefore, \(B_{\text{triangle}} > B_{\text{square}} > B_{\text{ring}} \).

Note: We expect \(B \) to be smallest at its center point for the wire ring since the wire is farthest from its center point.

Note: We expect \(B \) to be largest at its center point for the wire triangle since the wire is (on average) the closest to its center point.

Answer D.

30.03-07 Wire Loop Comparison 2006-9-14