Given: A network containing a battery \mathcal{E}, and capacitor C, and resistor R and an inductor L.

![Diagram of an RLC circuit]

Denote the angular frequency of the “LC” circuit by $\omega = \frac{1}{\sqrt{LC}}$.

The switch S is left at position a for a long period of time. The switch S is then moved from position a to b at $t = 0$.

Find the current through the inductor L.

A) $I = I_{max} \cos \omega t$
B) $I = I_{max} \sin \omega t$
C) $I = I_{max} \cos \left(\omega t + \frac{\pi}{4} \right)$
D) $I = I_{max} \sin \left(\omega t + \frac{\pi}{4} \right)$

Since the current is maximum at $t = 0$, the only satisfactory choice is $I = I_{max} \cos \omega t$.

Answer A.

32.06-03’RLC’Circuit 2004-3-24