In the figure shown, the capacitance is \(C \) and the inductance is \(L \). The resistance in the top branch is \(R_t \), and in the bottom branch is \(R_b \). The potential of the power supply is \(V_{rms} \).

Find the rms current delivered by the power supply when the frequency is very small.

A) \(I = \frac{V_{rms}}{R_t + R_b} \)

B) \(I = \frac{V_{rms}}{R_t} \)

C) \(I = \frac{V_{rms}}{R_b} \)

D) \(I = \frac{V_{rms}(R_t + R_b)}{R_t R_b} \)

The impedance of the bottom and top branches is

\[
Z_b = \sqrt{R_b^2 + \left(\frac{1}{\omega C}\right)^2} \quad \text{and} \quad Z_t = \sqrt{R_t^2 + (\omega L)^2}.
\]

We notice that, when the frequency is very small, \(\frac{1}{\omega C} \to \infty \) and \(\omega L \to 0 \). This means that the bottom branch, with very large impedance, carries negligible current; while the impedance of the top branch reduces to \(R_t \). The current that flows in the power supply and the top branch is

\[
I = I_t = \frac{V_{rms}}{Z_t} = \frac{V_{rms}}{R_t}.
\]

Answer A.