A straight long wire of resistance R, radius a and length L. It carries a constant current I.

\[X \]

\vec{I}

L

Determine the direction of the Poynting vector \vec{S} at X.

A) The direction of \vec{S} is \leftarrow.
B) The direction of \vec{S} is \uparrow.
C) The direction of \vec{S} is \rightarrow.
D) The direction of \vec{S} is \downarrow.

\vec{E} is along the direction of I. At X, using the right-hand-rule, one finds that \vec{B} is pointing out of the paper. Thus $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$, and it is pointing downward, or pointing radially inward.

Answer D.

34.04-02 `Poynting Vector at a Conducting Surface` 2004-11-9