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A parametrized lattice-dynamical slab model is presented and used to analyze the vibrational
properties of oxygen adsorbed on Ni(100) and Ni(111) surfaces. Results obtained from the slab-
model technique are compared with corresponding predictions based on a Greens’s-function ap-
proach to contrast the relative merits of these two methods for obtaining information about vibra-
tional phenomena. The lattice-dynamical slab model is also used to analyze experimental data for
several ordered oxygen configurations on the Ni(111) and Ni(100) surfaces, including the proposed
pseudobridge site for c¢(2X2) oxygen on Ni(100). The results presented indicate that lattice-
dynamical calculations can be used not only to test structural models proposed on the basis of exper-
imental measurements or other theoretical calculations, but can also serve as a basis for independent
structural determinations (bonding sites and bond lengths) when there is sufficient surface vibration-

al data to constrain the calculations adequately.

INTRODUCTION

The study of surface vibrations of crystals and adsor-
bates on crystal surfaces represents one of the more rapid-
ly growing areas of surface physics. Intense interest in
this subject and the rapid growth of the work in this area
has been stimulated by recent advances in experimental
techniques, which permit a complete characterization of
surface phonons throughout the two-dimensional Bril-
louin zone, as well as improvements in numerical methods
for calculating surface vibrational phenomena. Inelastic
molecular-beam scattering! has yielded surface-phonon
dispersion curves for low-index faces of the alkali halides
as well as some noble metals.? Inelastic electron scatter-
ing from surfaces, which is most commonly referred to as
electron-energy-loss spectroscopy (EELS), has refined our
understanding of the scattering processes which. underlie
electron scattering from surface vibrations, and has also
produced full phonon dispersion curves for clean Ni(100)
surfaces® and several ordered overlayer systems.*>

A complete characterization of inelastic scattering of
atoms or electrons from surfaces requires an integrated
treatment of both the scattering process and the dynamics
of the scattering system. However, one of the most at-
tractive features of inelastic scattering spectroscopies such
as neutron scattering, atom scattering, and EELS is that
detailed information related to structure, bond distances,
and interatomic force constants can be obtained directly
from the kinematic conditions for scattering* (energy- and
momentum-conservation laws). Kinematic conditions
constrain the scattering parameters which can result from
a given scattering system and incident particle. Converse-
ly, when the scattering properties of a given system have
been accurately determined from a broad range of scatter-
ing parameters, the results can be used to obtain informa-
tion about the scattering systém using appropriate models.
The site, height, and force constants associated with an
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adsorbed atom on a surface directly affect the vibrational
modes associated with that adsorbed atom as well as the
surface-phonon modes of the substrate. It is reasonable to
assume that structural parameters, i.e., the adsorbate
height as well as the force constants, could be determined
from the vibrational properties of the surface complex
provided the vibrational spectra were known and an ap-
propriate model connecting the various constants and the
vibrational modes were available. ,
Low-energy electron diffraction (LEED) is unquestion-
ably the most useful and widely used technique for deter-
mining surface structure. Structure determination based
on LEED requires difficult multiple-scattering calcula-
tions,>’ and there are many surfaces (for example, the
reconstruction on silicon) for which the structure has not
yet been established. There are even examples of simple
adsorbate systems in which LEED studies have encoun-
tered difficulty in obtaining a single structural parameter
such as an adsorbate bond height. Two specific examples
are O/Al(111) (Ref. 8) and ¢ (2X2)O/Ni(100) (Ref. 9). In
the O/Al(111) system, the problem is that the initial stage
of oxygen chemisorption on Al(111) involves simultaneous
formation of overlayers and underlayers. This property
was directly evident in EELS studies'” but was not evident
in LEED, therefore the initial attempts to determine the
oxygen-bond distance using LEED failed because the cal-
culations were based on the incorrect assumption that the
chemisorbed configuration involved only an overlayer.
The EELS measurements'® and lattice-dynamical calcula-
tions,!! similar to those discussed in this paper, were able
to determine that overlayer and underlayer oxygen formed
simultaneously, and also established that a temperature of
300 K was sufficient to initiate and sustain the underlayer
formation on Al(111) after oxygen adsorption. The
¢(2X2)O/Ni(100) appears to be a case in which at least
two oxygen-bond distances yield nearly equivalent R fac-
tors for LEED calculations and, in addition, a lower-
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symmetry surface site termed the pseudobridge site ap-
parently yields an even better R factor.!? This is a second
example where LEED alone has failed to yield an unam-
biguous determination of a surface-structure parameter.
Based on these examples, it is clear that independent alter-
natives for surface-structure determination are needed.
Surface vibrational spectroscopy provides one such alter-
native.

This paper discusses application of lattice-dynamical
slab calculations to obtain structural parameters from the
results of electron (EELS) or atom scattering experiments
which only rely on kinematic conditions for their interpre-
tation. These experiments yield the surface vibrational
modes of the surface complex. It should be mentioned
here that techniques for probing surface structure based
on the energy dependence of inelastic scattering cross sec-
tions!3 are also being investigated both experimentally and
theoretically. These investigations may yield an indepen-
dent approach for structural determination based on in-
elastic electron scattering. In the present paper, we will
show that lattice-dynamical slab calculations can unambi-
guously determine overlayer structural parameters by fit-
ting the dispersion curves of the surface vibrational
modes. These dispersion curves are found from the vibra-
tional data using only the kinematic scattering conditions
for their determination.

FINITE-SLAB MODEL

The two most common techniques for calculating vi-
brational spectra are the finite-slab and the Green’s-
function method for a semi-infinite slab. The Green’s
function calculations “involve considerable complexity in
both algebra and numerical computation by computer.”'*
The finite-slab method has the advantages of fast compu-
tation and straightforward implementation, and it is easy
to adapt to different crystal geometries. The Green’s-
function method has the apparent advantage of continu-
ous rather than discrete spectral densities but, as will be
shown, this difference is hardly significant. In both
methods the physical model is the same or similar, often
based on nearest-neighbor central forces in the harmonic
approximation. However, in the Green’s-function calcula-
tions it is assumed that below a certain layer (e.g., the
third or fourth substrate layer) the Green’s function obey
an exponential decrease with increasing depth beneath the
surface.’ No similar assumptions are necessary in the
finite-slab calculations. As the calculations of Allen
et al.® have shown, the actual variation of vibrational
amplitude with layer depth can be extremely complex.
Our calculations reveal that many of the normal modes of
a finite slab are “antisurface” modes, with little or no vi-
brational amplitude at the surface increasing to a constant
amplitude as the center of the slab is approached, similar
to the function 1— e ~% where z is zero at the surface and
increases as z increases into the crystal.

Our finite-slab model is a modification of the model
used by Allen et al.'> The computer code was provided
to us by F. W. deWette and B. Firey and was modified to
permit more convenient numerical calculation of the sur-
face lattice-dynamical properties of ordered overlayers on

crystal surfaces. The basic lattice-dynamical model is for-
mulated for nonionic crystals after Maradudin et al.!®
Our implementation of the model is described in this sec-
tion and in the Appendix. Input parameters which must
be specified in order to execute a calculation include the
position, mass, and “type” of each atom in the unit cell of
the slab and a complete description of the force constants
or potentials which characterize the pair interactions.
The slab calculation returns eigenvalues and eigenvectors
representing a complete characterization of the lattice
dynamics of the slab.

In this paper, we will show that when sufficient experi-
mental data are available to characterize the surface
lattice-dynamical behavior of an adsorbate substrate sys-
tem, an iterative procedure can be used to determine accu-
rately the input parameters for which the model yields the
best fit to experimental results. The sensitivity and accu-
racy of this procedure is sufficient to determine structural
parameters, in particular the bond distance of an adsorbed
overlayer. ‘

The calculational procedure begins by defining a slab
unit cell which is based on the periodicity of the ordered
adsorbate layer and extends throughout the thickness of
the slab. A type parameter is used to distinguish atoms of
different elements and possibly atoms of the same element
located in unequivalent lattice sites within the unit cell.
For example, if the surface is reconstructed the force con-
stants at the surface could be different from those in the
bulk, so surface atoms can be distinguished from bulk
atoms using the type parameter. The type parameter thus
allows different kinds of atom pairs to be distinguished,
so that each inequivalent pair can be assigned a different
pair potential (force constant). The crystal structure (e.g.,
face-centered cubic), crystal face (100 111, etc.), and over-
layer periodicity are varied by changing the atom’s coordi-
nates in the unit cell and the two primitive translation
vectors parallel to the surface.

The user also specifies the finite range and strength of
the central-force pair potentials and the value of the two-
dimensional wave vector q) in reciprocal space. If
desired, three-body angle-bending interactions may also be
included in the calculation (we have used a Keating poten-
tial'? for our adsorbate angle-bending interactions). Since
every atom should be at static equilibrium, we chose each
pair potential so that the atoms in the pair are in static
equilibrium with respect to each other. After Allen
et al.,’® we used the Lennard-Jones 6-12 potential

d(r)=4e[(o/r)2—(c/r)°], (1)

where r is the distance between atoms, € is the interaction
strength, 0=2"1/%¢, and r, is the equilibrium distance
between the atoms. With this potential the radial
central-force constant is 726/r(2), so the force constant can
be changed by varying 7y or €. In general only first-
nearest-neighbor interactions are included, but as many
neighbors as desired can be included by using different
values of € for different distances between atoms. With
only first-nearest-neighbor interactions the Lennard-Jones
model and a force-constant model are equivalent except in
the latter case the force constants are not altered when
distances between atoms are varied. We have used the
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Lennard-Jones potential in calculations involving sub-
strate interactions up to seventh nearest neighbors using a
single value of € for all substrate interactions, with
O gubstrate = 0.91712ryn to minimize the static energy of the
slab®® (rnn is the nearest-neighbor substrate distance).
Although in these calculations the atoms in the slab are
not in static equilibrium, the quantitative results of the
seventh-nearest-neighbor calculations are almost identical
to the first-nearest-neighbor calculations due to the rapid
decrease in ¢ as r is increased (i.e., the first-nearest-
neighbor substrate interaction greatly dominates the other
substrate interactions).

The computer first generates the dynamical matrix by
summing over all pairs of atoms involving one atom in
the primary unit cell and another atom (possibly inside
the primary unit cell) within the maximum chosen in-
teraction length of the primary unit cell. The computer
then determines the eigenfrequencies and eigenvectors for
all of the normal modes of vibration of the slab (refer to
Appendix). Based on the computed eigenvectors, surface
and bulk phonon modes are identified, and dipole- and
impact-scattering spectral densities are determined for
each eigenfrequency. To determine which modes are sur-
face modes we compare the sum of the squares of the vi-
brational amplitudes in direction a(=x, y, or z) of the
substrate atoms inside the unit cell in a given layer. The
slab center is not used since in some of the eigenmodes the
center layer has twice the amplitude it would have if there
were only one surface to the slab due to the superposition
of the contributions from each slab surface. It is usually
necessary to skip one layer between comparisons because
of the relative motion of atoms in adjacent layers. In
most eigenmodes, when one layer is vibrating in the direc-
tion perpendicular to the surface the layer above and
below it are vibrating parallel to the surface. If each layer
were compared with the layer immediately below it, most
surface modes would not satisfy our criterion that the am-
plitude decrease in all three directions simultaneously, but
when alternate layers are compared the known surface
modes meet the criteria, justifying its definition.

It should be noted that if the slab is less than 13 layers
thick (because of computer-memory limitations), there are
not enough layers to compare in one half of the slab to to-
tally characterize all the modes as being bulklike or sur-
facelike, but the criteria still decrease the number of possi-
ble surface modes considerably (many bulk modes can be

identified, but some bulk modes are incorrectly assigned

as surface modes due to an insufficient number of layer
comparisons). It is possible for modes to meet the criteria
in one or two directions but not all three. When the cri-
teria are met in only two, directions the eigenvectors are
visually inspected to determine if the mode should be con-
sidered a surface mode, since one layer-to-layer compar-
ison is sufficient for the computer to assign a mode as be-
ing bulklike in a particular direction. In almost all cases
the third direction displays bulklike eigenvectors and the
mode is not a true surface mode. A mode which fails the
test in all three directions is definitely a bulk mode; if it
fails in one or two directions it could be a bulk mode or a
surface-resonance mode (a special type of bulk mode
which will be discussed later), depending on the value of

its spectral densities (bulk modes have zero dipole and im-
pact spectral density while surface-resonance modes do
not).

These criteria were arrived at empirically, by examining
the eigenvectors of the fcc(100) surface and an fcc(111)
surface where the stacking patterns are ABAB... and
ABCABC. ... On the (100) surface the alternate layers
are of the same type, but on the (111) surface they are not.
If on the fcc(111) surface one compares A4 layers with A
layers and B layers with B layers, one cannot correctly
identify the surface modes. However, by comparing alter-
nating layers, the surface modes are identifiable with any
stacking sequence.

The effective dipole spectral density in direction a for
two-dimensional wave vector q) and ith eigenfrequency
o;(q))) is :

2
1
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where u;4(q) | k,) is the @ component of motion of atom
k (adsorbate or substrate) in unit cell / in the correspond-
ing ith eigenmode and the sums are over the adsorbate’s
N-substrate nearest neighbors, some of which may be in
different unit cells from the adsorbate. The denominator
is due to the factor 1+ n(w) in the formula for the
scattering cross section,'® where 7 (®) is the Bose-Einstein
distribution factor. It is assumed that the effective charge
on the adsorbate’s nearest substrate neighbors is distribut-
ed equally, and that the total substrate effective charge is
opposite the effective charge of the adsorbate to ensure
charge neutrality of the system. The average component
of the displacement of all of the adsorbate’s nearest-
neighbor substrate atoms, both inside and outside the unit
cell, is used instead of an average over only those atoms
inside the unit cell (as proposed by Mills et al.>'®1%) so
that the choice of unit cell does not affect the symmetry
of the dipole spectral density with respect to the group
symmetry of the adsorbate substrate system. For exam-
ple, Mills’s formulation of the dipole spectral density pro-
duces drastically different results for c¢(2Xx2)O/Ni(100)
when q| is parallel and perpendicular to the two nickel
atoms chosen to be inside the unit cell, corresponding to
two equivalent points along A (the line from T to X),
while our spectral density is identical for both directions
of qj. This results from the plane-wave nature of the
atomic displacements, with equivalent atom’s motions re-
lated by

wialay | kD =uialqy | K001 3)

where R)(/) is the two-dimensional translation vector
from cell O to cell I. Consequently, if | q) | 20 the atoms
outside the unit cell are not in phase with the atoms inside
the unit cell (unless q;=G, where G is a reciprocal-
lattice vector), and it is exactly this phase relationship
which determines the average displacement of the sub-
strate atoms, as well as the dipole spectral density. If
|q)| =0 (T') or all of the adsorbate’s substrate nearest
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neighbors are inside the unit cell, Mills’s formulation of
the dipole spectral density is valid. It is not immediately
clear what effect this difference has on the dispersion
curves calculated by Rahman et al.’ for
¢(2X2)O/Ni(100) with dipole-dipole interactions includ-
ed, but the discrepancy will be smallest at T (since the
substrate atoms outside the unit cell are in phase with the
corresponding atoms inside the unit cell) and largest at X
[the substrate atoms on opposite sides of the adsorbate
atom are 180° out of phase in a ¢(2X2) unit cell, so the
contribution of the substrate atoms to the dynamic dipole
moment should be zero]. Our calculated frequency spec-
tra are identical at equivalent points in the surface Bril-
louin zone independent of the definition of the dipole
spectral density.
The effective-impact spectral density is taken to be

> luialq | £,0) |2

Pl == @)

—#w/ky T ’
where k is an adsorbate or surface-substrate atom inside
the unit cell, since it is assumed that all atoms at the sur-
face have an equal probability of impact scattering the in-
cident electrons, and the scattering cross sections are ap-
proximated by the kinematic quantity |k,u;4(q)|k,0) | 2
for scattering in direction a, where k,, is the & component
of the wave vector of the incident electron. This is essen-
tially a superposition of the adsorbate spectral density in
direction a with the substrate spectral density in direction
a, with a weighting factor to reflect the adsorbate cover-
age of the surface. Modes which have little or no dipole
spectral density in direction a can have a large-impact
spectral density, and the dipole spectral density is really
only valid near T. By computing both spectral densities,
it is possible to determine which modes might be observ-
able at any point in the surface Brillouin zone.

By determining the surface modes and the spectral den-
sities, the calculations immediately reveal the dominant
surface polarization and intensity of each eigenmode.
This greatly facilitates interpretation of the calculation
and correlation with the experimental data and allows the
user to see quickly the effect on the surface modes of
varying one of the parameters. Eigenmodes with large
spectral densities which are not surface modes must be
bulk modes and consequently appear in clusters with a
small energy spread. These are the so-called surface-
resonance modes. A very simple test to determine if an
eigenmode is a true surface mode or if it belongs to a sur-
face resonance is to change the number of atoms in the
slab by varying the slab thickness. If the spectral densities
do not change, the mode is a true surface mode. Other-
wise the mode belongs to a surface resonance (see Fig. 1).
Bulk modes which are not resonance modes have zero
spectral density and constitute the majority of the modes.

With a 28-atom unit cell and only nearest-neighbor cen-
tral forces the program requires 7 seconds of CPU time
on a Control Data Corporation (CDC) Dual Cyber
1/0/750 (125 seconds of CPU time on a VAX 11/780) for
one value of g, allowing numerous iterations to be per-
formed fairly rapidly while adjusting parameters to fit the
data. Once a best fit has been obtained, more detailed re-

]

10 g -
F 28 ATOM CELL: o
- _ 56 ATOM CELL: +
= 10k ii%
5] =
pd -
fa - ©
=z - +
ST
B - T+
b
Q B +
g +©
= o o o
B +
H O
- +H—E- +O
10"4 — s | |
20 30 40 50 60

ENERGY (meV)

FIG. 1. Impact-spectral density of c(2Xx2)O/Ni(100) at T
for vibrational motion parallel to the surface and in the scatter-
ing plane. The oxygen is located in the fourfold hollow sites at a
height of 0.92(224) A and the surface is relaxed outward 5.2%.
Open circles are results of a 13-substrate-layer slab calculation
with 2 adsorbate layers and 28 atoms per unit cell, while plus
signs are from a 27-substrate-layer slab calculation with 2 adsor-
bate layers and 56 atoms per unit cell. Note that the two spec-
tral densities are identical for the oxygen mode parallel to the
surface near 56 meV (a true surface mode), while the spectral
densities for the 27-layer slab are lower in the collection of
modes peaked near 25 meV (a surface-resonance mode).

sults can be obtained if desired by increasing the slab
thickness and correspondingly the running time (a 56-
atom unit cell requires less than 2 minutes of CPU time
on the Cyber and 23 to 24 minutes of CPU time on the
VAX). The only limitation to the application of the
model is the requirement that the user must have some
idea of the value of the substrate’s bulk nearest-neighbor
force constant or know the bulk maximum phonon fre-
quency of the single crystal (usually available from neu-
tron or x-ray diffraction experiments), since the substrate
force constant can be determined by fitting the maximum
calculated frequency of the substrate to this frequency.
This limitation applies to the Green’s-function method as
well. The validity of the model will be demonstrated with
the system O/Ni(111), and results for O/Ni(100) will be
discussed.

EXPERIMENTAL RESULTS

Adsorbate vibrational spectra’ can be measured by
several different techniques, each with its own advantages
and disadvantages, but EELS appears to be the best suited
for measuring vibrational energies from 0—500 meV and
is capable of detecting vibrations both perpendicular and
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parallel to the surface. In EELS a monochromatic beam
of electrons (0—300 eV kinetic energy) is reflected from
the sample surface and energy analyzed to detect the
amount of energy the electrons have lost (or gained) in ex-
citing (deexciting) vibrational quanta. Conservation of en-
ergy requires that the incident and scattered electron ki-
netic energies E; and E; are related to the frequency o of
‘the vibrational mode excited by E;=E; —#w. Conserva-
tion of wave vector parallel to the surface requires that
k| =k;|—q)—G, where k| and k;| are the projection
of the scattered and incident electron wave vectors onto
the surface plane (k| =k sinf, where € is measured from
the surface normal), q|| is the phonon’s wave vector paral-
lel to the surface, and G is a two-dimensional reciprocal-
lattice vector. The electron’s energy and wave vector are
related by | k| =0.512 A~'VE(eV), so qy| can be varied
by changing the incidence angle or scattering angle of the
electrons along with the incident kinetic energy. These
kinematic scattering laws allow the dispersion of
vibrational-mode energies with wave vector to be deter-
mined from the experimental data.

Our EELS experiments were performed with a
Leybold-Heraeus ELS-22 spectrometer with a 127° sector
double-pass monochromator and double-pass analyzer.
The electron optics were modified by adding an additional
lens on both the monochromator and analyzer sides, per-
mitting incident energies up to 300 eV.* The nickel crys-
tal, purchased from Leico, was spark cut from a 3/8-in.-
diam rod after aligning to within +1° by x-ray diffraction.
After polishing to a mirror finish with 1p alumina
powder, the sample was cleaned in situ by sputtering with
500- or 1000-eV argon ions at a pressure of 5% 10~ Torr
while heating the sample resistively to 800 K or higher.
Sample cleanliness was checked by Auger electron spec-
troscopy using a Physical Electronics double-pass cylin-
drical mirror analyzer. A Varian four-grid LEED optics
system was used to check that the cleaned surface was
well ordered before admitting gas to form adsorbed layers
and to determine the adsorbate periodicity after exposure
(accomplished by back filling the vacuum chamber to be-
tween 10~ and 10~° Torr, as determined by a nude ioni-
zation gauge). The ¢(2X2)O overlayer was formed at ap-
proximately 500-K sample temperature, measured by a
chromel-alumel thermocouple spot welded to the edge of
the crystal, while monitoring the LEED pattern for the
disappearance of the (0,%) LEED spots characteristic of
‘the p (2 2) overlayer.

Incident electrons can interact with the substrate (and
adsorbate, if present) through long-range dipole scatter-
ing'® or short-range impact scattering.!> Dipole scattering
is sharply peaked around the specular direction (scattering
angle equals incident angle) while impact scattering is
broadly distributed over all scattering angles. In specular
geometry the dipole selection rule'® restricts the observ-
able vibrational modes. to those having a nonzero dipole
moment perpendicular to the surface. In off-specular
geometry impact-scattering selection rules'® determine
which surface vibrational modes are observable. Typical-
ly, if the scattering plane is along a mirror plane, surface
vibrational modes which are even under reflection in the
mirror plane should be observable while those which are
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odd under reflection should not be observable. Vibration-
al modes lacking any sort of mirror symmetry should also
be observable since the symmetry arguments used to
derive the selection rules cannot be applied. The observa-
tion of vibrations polarized parallel to the surface or the
measurement of the dispersion of vibrational modes along
crystallographic directions necessitates use of the impact-
scattering mechanism. Therefore, the most useful experi-
ments must be performed in off-specular geometry and at
fairly high kinetic energies. Figures 2—4 display typical
specular and  off-specular EELS  spectra for
¢(2X2)O/Ni(100), reflecting the difference in counting
rates associated with the two scattering mechanisms.

SLAB-MODEL CALCULATIONS

There has been some concern regarding the ability of a
finite-slab calculation to produce an accurate spectral den-
sity because of the discrete nature of the calculation.?’ It
has been postulated that delta-function-like features
which appeared below the maximum bulk phonon fre-
quency in the continuous spectral density calculated by
the Green’s-function method could fall in between the
discrete lines calculated by the finite-slab method, since a
unit cell with N atoms would have only 3N modes distri-
buted in frequency (over approximately 39 meV in the
case of nickel).

Since the Green’s-function method had been used to
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FIG. 2. Electron-energy-loss spectra for c¢(2X2)O/Ni(100).
0; and 6; are the incident angle and scattering angle, respective-
ly, of the electrons measured from the surface normal. The in-
cident electron kinetic energy is E;. The oxygen mode perpen-
dicular to the surface is observed in specular geometry (6; =86;),
and the oxygen mode parallel to the surface is observed in off-
specular geometry (6;£6;).
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FIG. 3. Electron-energy-loss spectrum for ¢ (2x2)0/Ni(100)
displaying the S, surface-phonon gain and loss peaks. Inset
shows surface-mode dispersion curves measured along A with
solid circles representing our data and open circles representing
data of Szeftel et al. (Ref. 26). Solid lines are our calculated
dispersion curves fit to one or two points on each of the mea-
sured dispersion curves.
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determine the adsorbate site of oxygen in the system
(V3xV3)R30° O/Ni(111) (Ref. 20) at T corresponding
to the specular EELS data of Ibach and Bruchmann,?' we
chose to test our finite-slab model on this system and to
address the issue regarding the accuracy of discrete spec-
tral densities determined using slab-type calculations.
Low-energy electron diffraction has determined the height
of the oxygen above the surface for this system but ap-
parently cannot determine in which of the two ine-
quivalent threefold hollow sites the oxygen is adsorbed.??
The Ibach-Bruchmann EELS data reveal two features (see
Fig. 5), one above the nickel bulk phonon maximum and
the other below. Based on the dipole selection rule, it is
assumed that these two modes observed in specular
scattering geometry are polarized perpendicular to the
surface (the z direction) and that the higher mode corre-
sponds to the atomic vibration of the oxygen atom. The
continuous dipole spectral density calculated by the
Green’s-function method®® with nearest-neighbor central
forces predicts two z-polarized modes for the fcc site and

c(2X2)0,/Ni(100)
E; = 28eV
B e, = 38"

B 6, = 58°, q;;= 0.64%"
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FIG. 4. Electron-energy-loss spectra for c¢(2x2)0O/Ni(100)
displaying the dispersion of the oxygen mode polarized perpen-
dicular to the surface as well as the surface-resonance mode R
near 25 meV.

three for the hcp site, indicating adsorption at the fcc site
(the fcc site is above a third-layer nickel atom while the
hcp site is above a second-layer nickel atom). The
Green’s-function calculations fit the high-energy peak at
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FIG. 5. Electron-energy-loss spectra for O/Ni(111) reported
by Ibach and Bruchmann (Ref. 21). The upper curve corre-
sponds to a p(2X2) overlayer and the lower to a
(V3xV3)R30° overlayer.

=25
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71.9 meV and the lower-energy peak was calculated 2.9
meV lower than observed. Our finite-slab calculation us-
ing first-nearest-neighbor central forces and fitted to the
high-energy peak gives discrete dipole spectral densities
having peak energies which are nearly identical to those of
the continuous dipole spectral density for each site (see
Fig. 6). The differences in shape and intensity of the
discrete and continuous spectral density is probably due to
differences in definitions of the spectral density (the au-
thors define several different spectral densities in this pa-
per?® and do not make it clear which one is used in the
figures). Also, the discrete spectral density would have to
be made continuous by Gaussian broadening or by convo-
luting it with an appropriate function to imitate the in-
strumental response function of the EELS spectrometer.
In both our finite-slab and the Green’s-function calcula-
tions?® the height of the oxygen atom was fixed at the
value determined by LEED,? or by ab initio cluster calcu-
lations,” the substrate was terminated assuming no sur-

face reconstruction, and the nickel-oxygen first-nearest-

neighbor central-force constant was the single parameter
to fit the spectra (after fitting the maximum bulk phonon
frequency with the nickel-nickel neighbor central-force
constant). Both models are essentially the same except in
the method that the spectral densities are calculated. As a
further test of our calculational procedures, our finite-slab
model was applied to the p (2X2) overlayer of O/Ni(111),
for which Green’s-function calculations have not been
published. Ibach’s EELS data®' reveal the same high-
energy peak but two different low-energy peaks. Our
finite-slab calculation fitted to the high-energy peak yields
two low-energy modes for the fcc site which agree with
the data to within 1.3 meV (although the lowest-energy
mode at 15.9 meV is anomalously weak), while the hcp
site is 13 times less intense than the fcc site in the 15.9
meV peak (see Fig. 7). This result suggests that the oxy-
gen atoms prefer the fcc threefold hollow sites for both
overlayers.

The calculations just described were performed at T us-
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FIG. 6. Continuous (Ref. 20) [(a) and (b)] and discrete [(c) and (d)] dipole spectral densities for (V3xV/3)R30° O/Ni(111), with
the oxygen adsorbed in the fcc [(a) and (c)] or hep [(b) and (d)] threefold hollow sites. The fcc site is above atoms in the third nickel

layer while the hcp site is above atoms in the second nickel layer.
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FIG. 7. Discrete dipole spectral densities for p (2X2)O/Ni(111), with the oxygen adsorbed in the fcc (a) or hep (b) threefold hollow

sites.

ing an experimentally determined height for the adsorbate
atom. It is a trivial matter to perform the finite-slab cal-
culations away from T, while it appears to make the
Green’s-function calculations more difficult. The adsor-
bate height need not be known, and, in principle, can be
determined from the model if there is sufficient experi-
mental data, namely, the adsorbate vibrational modes both
perpendicular and parallel to the surface, to serve as con-
straints on the model as the adsorbate height and other
parameters are varied. For ¢(2X2)O/Ni(100) this data is
now available. Previously, ab initio cluster calculations®
and lattice-dynamical Green’s-function calculations 19
correctly predicted the frequency at T of the oxygen mode
perpendicular to the surface, but concluded that the oxy-
gen height was O. 26 A while LEED** and other experi-
mental techmques indicated the height was approxi-
mately 0.9 A. Additional LEED calculations® revealed
two minima in the R factor of similar value at 0.0 and 0.9
A, so LEED proved unable to unequivocably determine
the adsorbate height. EELS data taken in off-specular
geometry (away from T') characterized the oxygen mode
parallel to the surface as well as two surface modes below
the nickel bulk phonon maximum. The dispersion curves
from T to X for these four modes have been published by
Szeftel et al.?® and are consistent with our own data ac-
quired prior to their publication (see Fig. 3). Rahman
et al.>?® calculated the dispersion of these modes using
the Green’s-function method assuming adsorption in the
fourfold hollow site at heights of 0.9 and 0.26 A with a
three- and four-parameter fit, respectively. Rahman
et al. did not otherwise vary the height to achieve a best
fit to the dispersion curves. The agreement with experi-
ment was significantly better with the oxygen at 0.9 A,
but it is not evident from their calculations that some oth-
er oxygen height would not fit the data as well or better.
Nor is it clear what effect variation of other relevant pa-
rameters would have on the various modes. Some features
of the dispersion curves and the effect on the dispersion
curves of varying certain force constants are said to be ob-

vious, but Rahman et al. do not offer any substantiation
for these statements or fully explore all of the relation-
ships which might exist. With the finite-slab model it is
possible to perform numerous calculations in a short time
in order to investigate all desired parameters thoroughly,
including the effect of varying the adsorbate height.

We have performed a seven-parameter finite-slab calcu-
lation using the data of Szeftel et al.?® for a common
reference. The calculations were fit to the oxygen parallel
mode frequencies at 0.3 and 0.8 A~ ! away from T along
A, the oxygen perpendicular mode and surface-resonance
mode frequencies at 0.3 A~ 1. and the S4 surface-phonon
frequency at 1.26 A~'(X). The parameters are the height
of the oxygen atom above the surface, the nickel-oxygen-
nickel angle-bending force constant, the second-nearest-
neighbor nickel-oxygen interactions strength, and the fol-
lowing first-nearest-neighbor interaction strengths:
nickel-oxygen, oxygen-oxygen, (surface nickel)-(surface
nickel), (surface nickel)-(second-layer nickel). The best fit
occurred with no angle-bending forces and no second-
nearest-neighbor interactions, so there were effectively
five parameters to fit to five data points (more data points
could have been included if necessary). The outer nickel
layer was relaxed outward 5.2% based on Rutherford
backscattering data.?’” However, variation of the relaxa-
tion between -+ 40% and —40% of the bulk interlayer
spacing had no significant effect of the adsorbate modes
(see Fig. 16). The best fit was obtained for an oxygen
height of 0.92(224) A, determined primarily by the oxygen
perpendicular and parallel mode frequencies near I'. In
fact, a two-parameter fit to our data varying only the oxy-
gen height and nickel-oxygen force constant gave a height
of 0.93(2) A, assuming no reconstruction. Although it
was probably unnecessary, and slightly increased the
amount of time required to fit the data, each parameter
was determined to at least five significant figures by fit-
ting the data to within less than 0.001 meV. Since the ex-
perimental peak positions cannot be determined to this ac-
curacy nothing is gained over a fit within 0.1 meV, but it
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FIG. 8. Variation of surface-mode energies with height of
¢(2X2)O above Ni(100) surface at T (solid lines) and X (dashed
lines). All other parameters are fixed at values determined by
best fit to five data points, the oxygen is located above the four-
fold hollow site, and the nickel surface is relaxed outward 5.2%
based on Rutherford backscattering data (Ref. 27). The
central-force constants in this model are inversely proportional
to the square of the distance between atoms, so the nickel-
oxygen force constant becomes slightly stronger as the oxygen
approaches the nickel plane.

made more obvious the dependence (often weak) of each
mode on each parameter.

Once the seven-parameter calculation was fit to the five
data points each parameter was varied over a large range
to determine that parameter’s effect on the frequencies at
T and X and to see if, in fact, a best fit had been obtained.
Figure 8 displays the effect on the surface modes of vary-
ing the oxygen height with all other parameters held fixed
(in our calculation the force constants depend on the dis-
tance between atoms sO the nickel-oxygen force constant
is also changing a small amount; the calculation does not
require the force constant to be related to the distance so
this is an artifact of this implementation of our program).
The oxygen vibrational modes at I" show the greatest vari-
ation with height and, more importantly, the mode polar-
ized perpendicular to the surface is monotonically increas-
ing while the mode polarized parallel to the surface is
monotonically decreasing. It should be pointed out that
the two oxygen modes polarized parallel to the surface are
degenerate at T and X due to the high symmetry of these
points as well as the symmetry of the fourfold hollow site,
but they should not be degenerate at other points in the
surface Brillouin zone and are not degenerate in our calcu-
lations, being split by 0.7 meV at ¢) ~0.6 as shown in
Fig. 19. However, the Green’s-function calculations of
Rahman et al.’ indicate that they are degenerate at all
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FIG. 9. Variation of surface-mode energies of
¢(2X2)O/Ni(100) with nickel-oxygen nearest-neighbor central-
force constant at T (solid lines) and X (dashed lines). Oxygen
height fixed at 0.92(224) A, surface relaxed 5.2%.

points along A, implying that there may have been a mis-
take in their calculations.

Figure 9 shows that the frequency of both of the oxy-
gen modes increases as a function of the nickel-oxygen
nearest-neighbor central-force constant, so that there can
only be one choice of height and force constant which fit
both oxygen modes simultaneously if only first-nearest-
neighbor central forces are allowed. This is due to the re-
lationship between the adsorbate bond angle and the fre-
quencies perpendicular and parallel to the surface. For an
atom in a fourfold hollow site, the ratio of the perpendic-
ular mode frequency to the parallel mode frequency is
V2cot(a), assuming the substrate atoms are frozen in
space (the infinite-substrate-mass approximation), where a
is the angle between the adsorbate-substrate bond and the
surface normal. Tt is interesting to note that the infinite-
substrate-mass approximation fits our calculated frequen-
cies better than when the first correction for the finite-
substrate mass®® is included, until the adsorbate is very
high above the surface (see Fig. 10). If second-nearest-
neighbor or angle-bending interactions with the adsorbate
are nonzero, virtually any relationship between the fre-
quencies of the adsorbate modes perpendicular and paral-
lel to the surface can be obtained. This is why it is impor-
tant to begin a lattice-dynamical analysis of a structural
parameter (such as the adsorbate height) with a general
force-constant model and use experimental constraints to
arrive at the set of parameters which best fit the data.
Figure 11 shows that the nickel-oxygen second-nearest-
neighbor central-force constant affects only the oxygen
mode polarized perpendicular to the surface and that the
dispersion of this mode is greatest when this force con-
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FIG. 10. Ratio of adsorbate frequency perpendicular to the
surface to frequency parallel to the surface vs the cotangent of
the angle between the adsorbate-substrate bond and the surface
normal. Solid line, infinite-substrate-mass approximation;
dashed line, infinite-substrate-mass approximation plus first-
order correction for finite-substrate mass; dotted line, exact rela-
tionship based on our finite-slab calculations.

stant is zero; the large dispersion of this mode in the data
is thus best fit when there is no second-nearest-neighbor
nickel-oxygen interaction. The same conclusion holds for
the nickel-oxygen-nickel angle-bending force constant (see
Fig. 12), so that we do, indeed, have only first-nearest-
neighbor central forces in the model with the best fit,
guaranteeing there will only be one oxygen height possi-
ble.

The dispersion of the oxygen mode polarized parallel to
the surface is adjusted with the oxygen-oxygen nearest-
neighbor central-force constant (see Fig. 13), which has a
very small affect on the S surface phonon (the Rayleigh
wave), and absolutely no affect on the surface modes at T.
The dispersion of the S, surface phonon is primarily
determined by the (surface nickel)-(second-layer nickel)
nearest-neighbor central-force constant, which affects all
of the surface modes to a small degree (see Fig. 14). The
nickel surface-resonance mode frequency can be adjusted
up or down by changing the (surface nickel)-(surface nick-
el) nearest-neighbor central-force constant (see Fig. 15).
While this parameter also affects the dispersion of the ox-
ygen mode polarized perpendicular to the surface, the
force constant required to fit the perpendicular mode
dispersion would be much greater than the bulk nickel-
nickel nearest-neighbor central-force constant, and this
does not seem physically reasonable in addition to produc-
ing the wrong frequency of the surface-resonance mode.

As mentioned earlier, variation of the surface relaxation .

(and simultaneously the surface nickel to second-layer

FIG. 11. Variation of surface-mode energies of c¢(2
x2)O/Ni(100) with nickel-oxygen second-nearest-neighbor
central-force constant at T' (solid lines) and X (dashed lines).
Oxygen height fixed at 0.92(224) A, surface relaxed 5.2%.
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FIG. 12. Variation of surface-mode energies of c(2

X 2)O/Ni(100) with nickel-oxygen-nickel angle-bending force
constant at T (soliod lines) and X (dashed lines). Oxygen height
fixed at 0.92(224) A, surface relaxed 5.2%.
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FIG. 13. Variation of surface-mode energies of c¢(2

X2)O/Ni(100) with oxygen-oxygen nearest-neighbor central-
force constant at T' (solid lines) and X (dashed lines). Oxygen
height fixed at 0.92(224) A, surface relaxed 5.2%.
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FIG. 14. Variation of surface-mode energies of c¢(2

X 2)O/Ni(100) with (surface nickel)-(second-layer nickel)
nearest-neighbor central-force constant at T (solid lines) and X
(dashed lines). Oxygen height fixed at 0.92(224) A, surface re-
laxed 5.2%.
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FIG. 15. Variation of surface-mode energies of ¢ (2
X2)O/Ni(100) with (surface nickel)-(surface nickel) nearest-
neighbor central-force constant at T (solid lines) and X (dashed
lines). Oxygen height fixed at 0.92(224) A, surface relaxed
5.2%.

nickel force constant) has little affect on any of the sur-
face modes (see Fig. 16). Each mode is therefore associat-
ed with one or two parameters, so it is possible to fit all
modes simultaneously in a fairly straightforward manner.
We are therefore confident that we have arrived at the
best fit possible within the constraints of the parameter
set we have chosen. Assuming adsorption in the fourfold
hollow site, the EELS data and a parametrized lattice-
dynamical calculation give a precise determination of the
adsorbate height -in agreement with the original LEED
calculation of 0.9+0.1 A, and similarly within the uncer-
tainty of the results of the other experimental techniques.
The surface-resonance mode is the most difficult mode
to characterize because it is not a single mode but a collec-
tion of modes. Some of these modes are even under re-
flection through the mirror plane passing through the ox-
ygen atoms, while others are odd. The even modes have
the oxygen motion in the mirror plane while the odd
modes have the oxygen motion perpendicular to the mir-
ror plane and parallel to the surface, consequently the di-
pole spectral density parallel to the surface and in the
scattering plane must be zero for odd modes but may be
nonzero for even modes. All of the surface-resonance
modes have the surface nickel atoms vibrating predom-
inantly parallel to the surface with components both
parallel and perpendicular to the mirror plane. The even
modes exhibit smaller vibrational amplitudes of the nickel
atoms parallel to the surface and in the scattering plane
than the odd modes, so the corresponding impact spectral
density is larger for the odd modes than the even modes.
The odd modes would therefore appear strongest if the
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FIG. 16. Variation of surface-mode energies of c¢(2

X 2)O/Ni(100) with surface relaxation ( 4+ outward; — inward)
at T (solid lines) and X (dashed lines). Oxygen height fixed at
0.92(224) A. The (surface nickel)-(second-layer nickel) nearest-
neighbor central force constant is also varying due to our
Lennard-Jones model.

scattering is predominantly associated with the potentials
of the nickel atoms while the even modes would appear
strongest if the scattering is from the oxygen atom poten-
tials (assuming from kinematical scattering arguments
that only vibrations parallel to the scattering plane, which
is along the mirror plane, can be detected). The even
modes disperse upwards in energy away from T while the
odd modes are nearly flat. The observed dispersion away
from T is initially flat and then dips downward in energy,
so that the odd modes give a slightly better fit. The odd
modes are much more localized to the surface than the
even modes, which are nearly uniform throughout the
slab. Comnsequently, when the thickness of the slab is in-
creased from 13 to 27 layers the spectral densities of the
even modes decrease much more than the spectral densi-
ties of the odd modes, due to the normalization of the
eigenvectors. All of the available evidence seems to point
to the odd modes as the source of the observed resonance
mode, which would contradict the impact-scattering selec-
tion rule'® which predicts that odd modes should be unob-
servable when the electron detector is in the scattering
plane formed by the incident electron beam and the sur-
face normal (Rahman et al.>?” assumed only even modes
could be observed). This demonstrates the value of know-
ing the entire eigenvector associated with a given mode,
which apparently is more difficult to determine with the
Green’s-function method.

Although the adsorption sites discussed so far have
been highly symmetric, the finite-slab calculation easily

<
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FIG. 17. Pseudobridge site proposed by Demuth er al. (Ref.
12) for ¢(2x2)O/Ni(100). The oxygen is 0.8 A above the sur-
face and displaced 0.3 A from the fourfold hollow site towards a
bridge site. The nearest-neighbor distance in nickel is 2.49 A.

handles asymmetric adsorption sites as well. For exam-
ple, Demuth!? has proposed a pseudobridge site for the
oxygen atoms in the c¢(2X2) overlayer on Ni(100) 0.3 A
off center from the fourfold hollow site at a height of 0.8
A (see Fig. 17). On the basis of group theory, the reduced
symmetry of the pseudobridge site should give rise to two
peaks observable in specular EELS. This is because the'
oxygen mode parallel to the surface and parallel to the
displacement from the fourfold hollow site will also have
some amplitude perpendicular to the surface (the oxygen
mode perpendicular to the surface will also have a small
component parallel to the surface); we will henceforth
refer to this predominantly parallel oxygen mode as the
pseudo parallel mode. When the oxygen is laterally dis-
placed perpendicular to the scattering plane all three oxy-
gen modes should be observable in off-specular EELS
since there is no mirror-plane or rotation symmetry on
which to base impact-scattering selection rules. If the ox-
ygen is laterally displaced along the scattering plane then
the scattering plane is still a mirror plane and only one of
the oxygen parallel modes will be observable in off-
specular EELS (the pseudo parallel mode). Rahman
et al.’> performed periodic cluster calculations (a finite-
slab calculation with one nickel layer)'* instead of their
usual Green’s-function calculations for ¢ (2% 2)0O/Ni(100)
with the oxygen in the pseudobridge site at a height of 0.9
A instead of 0.8 A. Rahman et al. thus did not actually
test Demuth’s proposed geometry. Rahman et al. used
two different force constants for the long and short
nickel-oxygen bonds, varied the ratio F of these two force
constants while simultaneously fitting the oxygen perpen-
dicular mode at T, and reported the oxygen perpendicular
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and parallel mode frequencies at various points along A,
along with the ratio R of the pseudo parallel mode’s com-
ponents perpendicular and parallel to the surface
(equivalent to the tangent of the angle formed by the oxy-
gen displacement and the surface). Rahman ez al. found
that for large ratios of the nickel-oxygen force constants
that the perpendicular component of the pseudo parallel
mode becomes very large at T and hence this mode should
be easily observable in specular EELS. However, the
parallel mode frequencies do not fit the data for these
large force-constant ratios, and they do not report any
values for the dipole spectral density to compare the pseu-
do parallel mode with the pseudoperpendicular mode.

We have performed finite-slab calculations for oxygen
in the pseudobridge site at a height of 0.8 A which indi-
cate that the pseudo parallel mode of oxygen does, indeed,
have a small dipole spectral density perpendicular to the
surface at T when R=0.218 and F=1.485, but it is 40
times smaller than the dipole spectral density of the
predominantly perpendicularly polarized oxygen mode.
This is not inconsistent with the specular EELS data we
have taken, which show a very weak shoulder near 55
meV on the side of the 39-meV peak corresponding to the
perpendicular mode. However, this could also be due to
small domains of p(2X2)O coexisting with the c(2X2)O
domains. In order to fit both the oxygen perpendicular
mode and pseudo parallel mode simultaneously at a height
of 0. 8 A, it is necessary to introduce an oxygen interac-
tion with the nickel atom underneath it in the second
layer. The strength of the oxygen interaction with the
second layer could be reduced to zerq by putting the oxy-
gen height somewhere near the 0.92 A determined for ad-
sorption ion the fourfold hollow site. This is because the
oxygen parallel mode frequencies increase as the oxygen
atom approaches the nickel surface while the surface
nickel-oxygen force constants are adjusted to fit the oxy-
gen perpendicular mode frequency. By including the oxy-
gen interaction with the second layer (where the bond is
nearly perpendicular to the surface), the oxygen interac-
tion with the first layer can be reduced when fitting the
oxygen perpendicular mode frequency, simultaneously de-
creasing the frequency of the oxygen parallel modes. This
may explain why Rahman et al.> did not use 0.8 A for
the oxygen height in their periodic cluster calculation
(they did not have a second nickel layer with which the
oxygen could interact). We did not attempt to include any
angle-bending interactions in our calculations because this
would introduce at least three additional parameters for
which no reasonable values are known (we have already
introduced one additional parameter by having different
force constants for the long and short bonds between the
oxygen atom and the surface nickel atoms), otherwise the
calculations were identical to those for adsorption in the
fourfold hollow site with the oxygen height fixed instead
of variable. The two parallel modes of the oxygen are
split by at most 3 meV (see Fig. 18), which would be ex-
tremely difficult to detect with a resolution of 4 meV, and
is within the spread of the experimental data (see Fig. 3
inset). For comparison, the surface modes of ¢(2x2)O in
the fourfold hollow site of both even and odd symmetry
(under reflection in the scattering plane parallel to A) are
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FIG. 18. Calculated surface-mode dispersion curves for

c(2X2)O/Ni(100) with oxygen adsorbed in pseudobridge sites.
Solid lines are modes polarized predominantly perpendicular to
the surface or parallel to the surface and in the scattering plane
(shear vertical and longitudinal modes), while dashed lines are
parallel to the surface and perpendicular to the scattering plane
(shear horizontal modes). The dispersion curves for oxygen dis-
placement from the hollow site in the directions parallel and
perpendicular to qy; are shown in (a) and (b), respectively. In the
latter case (b) the scattering plane is not a mirror plane to all
surface modes are observable, while in the former case (a) shear
horizontal modes are not observable according to impact-
scattering selection rules (Ref. 13).

shown in Fig. 19. The only evidence against the pseu-
dobridge site in terms of the EELS data is that the S sur-
face phonon should be observable in those domains where
the oxygen atom is displaced from the fourfold hollow
site in the direction perpendicular to the scattering plane,
but the largest splitting between the S; and S, surface
phonons is less than 4 meV (at X) and this would also be
difficult to measure. Consequently, the pseudobridge site
cannot be discounted on the basis of symmetry and

‘group-theoretical arguments. The fact that the observed

S dispersion curve dips near X may in fact be a result of
the superposition of the S; and S, peaks, since the former
has a similar dip in the calculated dispersion curves while
the latter does not. If this is correct then one must con-
clude that the ¢ (2X2)O adsorption is, in fact, at the pseu-
dobridge site. However, our judgment is that the best ex-
perimental data is presently unable to distinguish between
the fourfold hollow and pseudobridge sites.

Szeftel and Lehwald® have reported dispersion curves
for p(2x2)O/Ni(100) and claim that the frequencies of
the oxygen modes polarized perpendicular and parallel to
the surface are consistent with an oxygen height of 0.88
A, using the finite-mass correction formula mentioned
earlier.? Using their values for the frequencies, we have
performed slab calculations which indicate an oxygen
height of 0.6688 A, which is inconsistent with the accept-
ed value of 0.9 A. We find from our calculations that if
the oxygen is at 0.9 A, the oxygen mode polarized parallel
to the surface should be found at 67.9 meV (unfortunately
close to the NiO phonon mode at 69 meV) and not at 79.4
meV as reported (the perpendicular mode has been mea-
sured in specular EELS at 53.3 meV). Our own EELS ex-
periments with p4g(2X2) carbon overlayers on Ni(100)
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FIG. 19. Calculated surface-mode dispersion curves for

¢(2X2)O/Ni(100) with oxygen adsorbed in fourfold hollow
sites. Solid lines are modes polarized predominantly perpendic-
ular to the surface or parallel to the surface and in the scattering
plane (shear vertical and longitudinal modes), while dashed lines
are parallel to the surface and perpendicular to the scattering
plane (shear horizontal modes). Shear horizontal modes are not
observable according to impact-scattering selection rules (Ref.
13).

indicated a peak near 80 meV in off-specular geometry,
which our calculations for a p(2X2) carbon overlayer
show are congistent with the LEED determined height of
0.1 to 0.2 A.® This demonstrates the ability of the
finite-slab model to check the consistency of proposed
structural models with measured vibrational spectra.

CONCLUSIONS

Using finite-slab calculations one can determine adsorp-
tion sites and adsorbate heights from surface vibrational
spectra alone. Spectral densities obtained with the slab
method are as sensitive to variations in the adsorbate site
and other structural parameters as those obtained by the
Green’s-function method. Even with limited data, as
available in specular EELS, the calculations are able to
determine the adsorption site when the adsorbate height is
known and there is more than one loss peak in the spec-
trum. The calculations can also serve as a check on pro-
posed structural models by determining if all of the vibra-
tional data is consistent with the model using reasonable
force constants. The calculation is straightforward, can
be performed on any modest-sized computer, and can be
mastered in a very short time, allowing anyone with the
inclination to interpret their own surface vibrational spec-
tra.

APPENDIX

We seek solutions of the eigenvalue problem

o} q)eia(q) | k)= 3 Doglq | kk"e;glq) | k'), (A1)
k'B

where i labels the 3N solutions, k and k' label the N
atoms in the unit cell, q; is the two-dimensional wave
vector, a and 3 are Cartesian coordinates X, y, or z, D is
the dynamical matrix, and the eigenvectors e;(q)) satisfy
the usual orthonormality and closure relations. The vi-
brational amplitude of atom k in unit cell / for mode i
and wave vector q) is related to its corresponding eigen-
vector by

eia(q) | k) equ-R”(l)

( mk)l/Z ’
where my is the mass of atom k and Ry(/) is the two-
dimensional lattice translation vector between cell / and

the fundamental unit cell (/ =0). The dynamical matrix
D is defined by

uia(q“ I k)= (A2)

, 1 o iq R (1)
Dp(q) | kk )=W§q}aﬁ(0k;lk Je I
(A3)
where
o’
K= |— O’ A4
Pap O3 K= | 5, (Ok)u () LOk e’ Y

and @ is the total slab potential energy. If r is the dis-
tance between atom k in cell O and atom k' in cell / and

~ ¢(0k;Ik’) is the corresponding pair potential, then define

(AS)

r. r 2 . ,
baplOk ;1K) = t;zﬁ 3%(0k;;Ik') ,

ar?

where r, is the a component of r from atom k to atom
k'. It can be shown that

aB(Ok k') __¢aﬁ(0k Ik’ )+80 ISkk 2¢aﬁ(0k I'k") .
(A6)
From (7) and (10) it follows that
Daplqy | kk):’;—kl }I‘, [¢aﬁ(0k;lk)eiqu-ml(1>
— 3 $ap(Ok;Ik") (A7)
roii
and
Da,g(q” | kk')
iq Ry . ’
(m mk:)l/z > baplOk ;1K' e if k's£k .
(A8)

In the Lennard-Jones model

T2€rqrp
¢aﬁ(0k;lk')="—’r4—— , (A9)
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while in a central-force-constant model with force con-
stant K,

Krorp
¢a5(0k;lk’)=——rz— . (A10)
All results presented in the present paper were obtained
using the model of Eq. (A9). In a nearest-neighbor model
I is summed over the nine unit cells with the fundamental
unit cell in the center. This is most easily accomplished
by replacing / with two indices summed from —1 to 1,
corresponding to the coefficients of the two primitive
translation vectors between the fundamental unit cell and
one of the nine cells in the sum over /. If k runs from 1
to N, then D,g(q) | kk’) can be configured as a 3N X 3N
matrix by letting a=1,2,3 correspond to x,y,z and defin-
ing

" Doyak—1),p+3—1)(q)) =Dqaglq | Kk') . (A11)

The calculation of the dynamical matrix is thus reduced
to two sums over the N atoms in the unit cell, two sums
from —1 to 1, and two sums from 1 to 3.

Once the dynamical matrix is formed, standard library
routines are used to solve for the eigenvalues and eigen-
vectors (complex if not at a high-symmetry point). The
IMSL library routines we used on our VAX 11/780 are
VCVTCH and EIGCH. The EISPACK library routines we
used on our CDC Dual Cyber 170/750 are HTRIDI,
IMTQL2, and HTRIBK.
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