Electron energy loss spectroscopy studies of nitrogen adsorption on W(100)

A Sellidja and J.L Erskinea

aDepartment of Physics, University of Texas, Austin, TX 78712, USA

Abstract

Vibrational excitations of nitrogen on W(100) are investigated over the 100–300 K temperature range using elastic and inelastic electron scattering. New vibrational modes of nitrogen are identified that require different mode assignments from previous work. Experimental evidence for a molecular precursor to the atomic β_2 phase of adsorbed nitrogen is presented. Coverage dependent studies of vibrational modes suggests conversion between two different molecular surface phases and between atomic and molecular phases. A new ordered nitrogen phase characterized by a (4×1) LEED pattern is observed. The new phase appears to consist of orthogonal domains of $p(4 \times 1)$ symmetry that contain atomic nitrogen at the four fold sites (the β_2 atomic phase) with additional bridge-bonded nitrogen atoms in the unit cell.