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The relativistic quantum theory of Fermi Dirac fields of arbitrary spin is -
investigated and a general theorem is proved which aserts that for fields of half
integral spin >14, the possibility of a consistent quantization requires that
the equal-time anticommutators must be functions of the other fields to which
the field in question is coupled. The case of spin 34 is studied in detail and the
equivalence of various formulations of the theory is shown. The inconsistency
of the relativistic local quantum theory of a charged spin 34 field in interaction
with an external electromagnetic field is demonstrated by showing that the
equal time commutation relations and relativistic covariance of the theory
are not compatible. Finally, the mixed spin 34-spin 14 (Bhabha) field is found
to be characterized by the same inconsistency.

L INTRODUCTION

The description of physical states in terms of a relativistic field theory is
doubly covariant in the following sense: on the one hand, the complete set of
states of the quantized fields in virtue of the Lorentz covariance of the theory
yields a representation of the (inhomogeneous) Lorentz group, which is in gen-
eral reducible. On the other hand, the fundamental field operators themselves
form the bases of (perhaps several) irreducible representations of the inho-
mogeneous Lorentz group. It is the mass and spin parameters of these irre-
ducible representations that are usually called the mass and spin of the fields
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that characterize the latter representations. For example the Maxwell field is
characterized by zero mass while the states which correspond to an assembly
of photons yield a representation of the Lorentz group characterized by a finite
mass. '

There, at present, is no objective criterion for postulating that a particular
particle is to be associated with a fundamental field. However, it is this associa-
tion that some believe distinguishes elementary particles from composite struc-
tures. In this paper it is the fields to which we refer and if we say that a particle
of a certain type cannot exist we mean that it cannot be elementary in this
sense. We also assume that the primary kinematic characteristics of the par-
ticles, its spin, charge, isotopic spin, etc., are also characteristic of the field with
which it is associated and that the coupling of the field to others does not alter
these features.

Even in the classical theory the introduction of coupling between the fields
may materially modify the covariant significance of the set of solutions and one
must at each stage examine this aspect. Thus, for example, the requirement that
the classical Maxwell field should be the wave function of a null mass particle
of unit spin gives rise to the gauge invariance of the equations which requires
the coupling of the field to conserved currents. Then the solutions of the classical
equations with and without interaction then form & representation which is
continuous in passing from one to the other. (In particular the spin parameter
of the system is the same for both the free and coupled fields.) There is one
other requirement which is basic to the correspondence between the free and
coupled fields. That is, that the field without interaction can be formulated in
such a way that the introduction of coupling can be restricted to nonderivative
types. In this case the structure of the terms involving the field derivatives (the
so-called “kinematical” terms) will be the same for both the interacting and
noninteracting systems. For quantized fields whose dynamics follows from the
action principle, this has the consequence that the commutation relations are
independent of the dynamics, provided all the field components which are in-
dependent kinematically follows from the structure of these terms (1). We shall
in fact show that in the case of F. D. fields with components which transform
with spin 2 34, the circumstance just mentioned can never occur for a quantiz-
able theory. In fact, we shall show that the consideration of dynamics is essen-
tial in the discussion of the quantization. This is the first indication that the
consistency of covariant quantization imposes more stringent requirements than
that of a formal Lorentz covariance and a consistent free field quantization.

We use a local Lagrangian together with the action principle to characterize
the system since no other complete dynamical principle is known for relativistic
fields. ..

In this paper we shall investigate the consequences of the fact that the dy-
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namics is essential for the quantization by studying the spin 34 field and the
Bhabha field interacting with an external electromagnetic field. We shall find
that in both cases a consistent covariant quantization is impossible. -

II. A THEOREM ON THE KINEMATICS OF FERMI-DIRAC FIELDS

Let us first review the basic description which is used for a Fermi-Dirac
field which has no internal degrees of spin other than its spin. The Lagrangian
for such a system will have the form (1).!

7 (V"o — oA™Y — %, (21)
where 3C is an invariant function of the field components ¢ and of all the other
fields to which they are coupled. (For the latter fields we do not write the “kine-
matic terms” explicitly.) The field ¢ is a set of Hermitian operators which are
coupled together in the kinematic term by matrices 4* which we assume to
form an irreducible set. For the Lagrangian to be Hermitian, the matrices 4*
must be themselves Hermitian. Further, since we consider ¢ to be-a Fermi-
Dirac field, these matrices are also symmetric and real.

From the action principle we obtain the field equations

bae _ & (2.2)

£=

where the subseripts 7 and [ signify, respectively, the right and left derivatives
of 3¢V, These are formed by factoring to the right or left in the differential of
3¢ the anticommuting variations of the field components. The operator generator
of this same class of infinitesimal variations of  is

= % f do A%y, (2.3)

The matrix A° may be singular and only the field components which appear
in the generator, namely those in the non-null space of A° will be candidates
for independent variation by G. We say “candidates’ since the field equations
(2.2) may impose further constraints (i.e., relations between field components
which do not involve time derivatives) on these field components so that the
variations 8¢ which appear in (2.3) are not independent. To clarify this situa-
tion let us discuss the structure of the field equations (2.2) briefly. Let P, be the

projection matrix on the null space of A% so that Py = Pgand PeA° = 0. Then

from (2.2) we have the following equations of constraint:

. 6;3C
iPA*o = Py 2.
oA Oy 03 ¥
1 We use units where b = ¢ = 1 and a real space-like metric (g** = (—1, 1, 1, 1)). Greek
indices run from 0 to 3 while Latin indices run from 1 to 3.
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Since the A* are linearly related to A° by an infinitesmal Lorentz transformation
(see Eq. (2.7) below), it follows that PoA*Py = 0 and consequently the con-
straint equations may be written : :

iPoA*3,(1 — Po)y = Py 5;—%“ (2.4)
These constraints emerge solely as a consequence of the kinematics of the field
¢ (that is, the singular property of A%). The definition of the kinematically
dependent field components Py is totally independent of the dynamical term
3¢. We shall call (2.4) “primary constraints” to distinguish them from possible
“secondary constraints” which define a second set of kinematically dependent.
components whose structure is dependent on the dynamics.

The left side of (2.4) does not contain the field components Pw and one or
both of two possibilities may arise. First, the right side of (2.4) may contain
certain (or all) of the field components Py in such a way that we may express
them in terms of the components (1 — Py)y. If all of the components are so
expressed, the remaining equations (2.2) become equations of motion for the
dynamical components (1 — Pq)y and they are accordingly capable of arbitrary
variations at a single time. The second possibility occurs when some (or all)
of the field components P are left undetermined by Eg. (2.4) but instead
additional constraints are imposed upon some of the components (1 — Po)y at
a given time; in this case not all variations (1 — P)éy are independent. There
are two sub-alternatives at this point. First, these equations in conjunction with
the remaining field equations may degenerate and no longer involve the field
v. Electrodynamics is such a theory and in general this situation occurs when
the mass is zero and the field equations are invariant under some group of trans-
formations involving arbitrary functions, such as gauge transformations. In
electrodynamics, the degenerate field equation is the law of charge conservation.
The second alternative is that the equations in conjunction with the remaining
field equations cause a further separation which results in the existence of new
(secondary) equations of constraint. It is possible that these secondary con-
straints may then determine the remaining components from the set Py or the
whole process may repeat. Thus, if the secondary equations do not fix the un-
determined components (1 — Po)y, these equations together with the remaining
field equations will again separate to produce tertiary equations of constraint.
The process will finally terminate since there are a finite number of components
for y. It is important to emphasize that the secondary (and higher) constraints
define kinematically dependent sets of field components whose structure is
dependent on the dynamical term.

We shall now show that the last of the alternatives mentioned above must
occur for the field equations if the field ¢ is to be quantized consistently accord-
ing to the Fermi-Dirac statistics and has spin = 34. For this let us assume that
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there are no constraints on the components ¢ = (1 — Po)y and shoW that this
results in a contradiction; for, in this case, the variations &) = (1 — Po)d¥ are
independent and with the aid of the generator (2.3) we may derive the equal
time (anti-) commutation relations (1)

(Fa(@), b)) = [(1 — P)A’(1 = P)]a®(z — v), (2.5)

where the matrix is inverted in the nonsingular subspace. If these commutation
relations are to be consistent, (1 — Pg)A°(1 — Py) must be a positive definite
matrix since o form a set of Hermitian operators, hence the left-hand side of
(2.5) is positive-definite. We shall now show that (1 — Pp)A%1 — Po) is in-
definite if the field ¢ has spin > 14 so that the quantization implied by (2.5)
cannot in fact be carried out consistently. The only alternative is t© insure that
the variations ). are not independent so that (2.5) would not follow; for this
it is necessary that the field equations must always impose relations among the
field components A%. These relations must be found among the primary con-
straints and therefore depend on the structure of 3C. These constraints must
restrict the fields ¢ in such a manner that the generator (2.3) expre‘Ssed in terms
of a truly independent field components and their variations involves a matrix
4 (related to A°) which is positive definite. We can summarize this discussion
as follows. The requirement that some of the primary constraints give relations
among the components A%, means that secondary constraints must appear. If
will turn out that for spins = 34 these secondary constraints are essential whether
or not the matrix 4° is initially assumed to be singular. In any theCTY involving
Fermi-Dirac fields which has the possibility of being consistently quantized
the matrix A° must always be singular and both primary and secondary con-
straints must be present.

To demonstrate that A° is indefinite we make use of the invariance of the
theory under the transformations constituting the homogeneous Lorentz group.
If S,p are the infinitesimal generators2 of this group, the Lagrangian matrices
A" satisfy the relations

STsA* 4+ A*Sus = 1(Abs" — Apda"). (2.6)

If we specialize to the case of simple Lorentz transformations we get

(2.7)
(2.8)

—gnm— [

where Sy = Su is a real symmetric matrix, If we substitute (2.7) in (2.8) we

3 The matrices: iS,s have real elements since they describe the transformation f’f Hef-
mitian field components into Hermitian field components. S, i8 symmetric and Sy is anti-
symmetric.
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‘ind
 ShdA + A°Sh + 2844°8u — A° = 0. (2.9)

The proof that A° is nondefinite follows directly from (2.9). Without loss of
generality we may assume that the set A* is irreducible, because if they were
not, one set of components of ¥ could be covariantly separated from the rest
and hence the theory would reduce to that of two fields coupled in some way
and the quantization could be treated separately for each field. If A° is assumed
positive, then it has a lowest eigenvalue A = 0.

Let Py be the projection matrix which satisfies

. Py(A" =) =0 = (4" - N)P,.
Then from (2.9) it follows that
 2PWSa(l — PO)(A° — M) (1 — Py)SuPy
' = —APA((284)" — )Py. (2.10)

Since (1 — P\)(A® — N\)(1 — P,) is positive definite the left side is positive
semidefinite. The right side is negative semidefinite. Hence, both sides must
vanish. Since Sy is a real matrix, the vanishing of the left side means that

P.Su(1 — P,) = 0.

But if P, # 1, this leads to the result that PAA*(1 — P,) = 0 which contradicts
the assumption of the irreducibility of the set A". Consequently,

(1 =Py’ =N (1 = P)

is indefinite unless P, = 1. In the latter case we have from the right side of
(2.10)

(28%)* = 1.

That is, the spin of the field is 14. Thus, if A°is to be positive it must be a mul-
tiple of the unit matrix and the spin of the field must be 14.

We may thus draw the conclusion that the kinematics of all Fermi-Dirac
fields of spin 34 will necessarily involve the dynamics of the field if they have
the possibility of a quantization. This is consequent on the indefinite nature of
A" in all such theories which necessitates the imposition of secondary constraints.
It is for this reason that the free field quantization is completely without interest
since even the equal-time commutation relations for the free and for the coupled
fields are distinct (no interaction representation exists). We shall further find
that in the case of spin 34 though it is possible to quantize the free field con-
sistently, the commutation relations for a charged spin 34 field coupled to an



132 JOHNSON AND SUDARSHAN

external electromagnetic field only by its charge (i.e., “minimally”) are incon-
sistent for any nonvanishing external field. '

III. CLASSIFICATION OF SPIN 3¢ KINEMATICS

An explicit example of the theorem presented in the previous section is pro-
vided by the kinematics of & spin 34 field. In accordance with the general action
principle the system is completely specified by the local Lagrangian density
(2.1). If we restrict ourselves to & free field, the dynamical term becomes,

%, = JsmyBy,
where because of the Fermi statistics B is a numerical matrix satisfying the

relation
—Br = B = BY,

and whose structure will depend upon the precise nature of the system. In
the usual theory (2), ¥ is a 16-component entity and is the direct sum of the
12-component D(1, 38) + D(14, 1) representation and the 4-component

(34, 0) + D0, 3%) .

representation of the homogeneous Lorentz group. Relativistically, the field
(1, 14) + D(34, 1) is not the only irreducible representation which exhibits
a maximum spin of 34 since there exists the 8-component D(34, 0) + D(O, 34)
representation. We shall consider the most general equation which involves the
8-component entity in addition to the 16-component vector spinor which thu?
contains 8 + 12 + 4 components.

A very convenient method of treating such a field is provided by the theory
of (totally) symmetric multispinors. The number of independent componentS
of a third-rank symmetric multispinor ¢ is 4.5.6/1.2.3 = 20. Here ¢a. trans
forms as the direct product of 3 spinors Ya(1)¥5(2)¥.(3). It can easily be show!l
that they correspond to the direct sum of the 8 and 12 component representa-
tions mentioned above. The projection matrix to the (1, 35) + (33, 1) part

of the multispinor is,

b 3 5 5 5 6
}i[gban’abb’acc’ - 5nu"ybb"y::c’ - 'Yan’abb"ch’ - 'Yaa"Ybb’ﬁac’]-

We shall need one more result from the theory of multispinors,’ namely thet
all invariants that can be constructed can be expressed in terms of the tw
fundamental invariants dae s dee and daayosryeo + bt oe + Voavibdeo . ABS
consequence, the most general form for the Lagrangian matrices A*, B are,

3 This and many other results have been derived by the authors and J. Schwinger (uf”
published). X
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AY = Z (B'.Yk>aa"ﬂbb’ﬁcc' + )\Z (ﬂ'Y")aa’(ﬂ'Ys)bb’(,B’Ys) ee’

. ’ . B

= w2 (8" )abear + (By")awBoral + x(By")aa ,
B = BawBuBoer + N 2 Buar (B )t (BY ) cor + 0Buar , (3.2)
where the sum is overall possible permutation of the Dirac matrices and where
Y =~ VT = —Bv,8 8 = v® = —vo which is a Majorana representation.

We have absorbed an overall normalization into the definition of the unit of
length. The index d refers to the 4 component single-index spinor D(14, 0) +
D(0, 24) which together with ¢, comprises the 24 components of y.

Let us first consider the simple case where the 4-component spinor is not

present. In this case w = « = § = 0 and the vector matrix 4* assumes the
simpler form,

AY = Z (ﬁ'y“)aa’(ﬂbb’ﬁcc’ + )\(B'Ys)bb'(ﬁ')’s) z:c’)-

Again, it can be shown that the two factors correspond to a decomposition of
¥ according to spin 34 or spin % under space rotations. One immediately notices
that the indefiniteness of the spin 34 is unaltered; both the spin 34 and spin 14
parts have indefinite submatrices in general,

For a consistent quantization one is thus forced to do the following: put
A = 1 so that the spin 34 submatrix becomes non-negative. This makes A°
singular, but the singular part which corresponds to the 8-component

D(33,0) + (0, 35)

part of the field, decouples, that is,‘ the entire set A* becomes reducible and we
may therefore omit these components. Since no choice of w and « with A\ = 41
will make the roots of

(A% 4 (2 — ) A" — 2 = 18,

positive, these quantities must be chosen so as to produce primary constraints.
For this purpose one has to choose « so that A° becomes singular: one obtains,

of = —1gx. ' (3.6)

At this stage 4° is singular but still is indefinite. The singular nature of A° leads
o the primary constraints but in view of the indefiniteness further restrictions
Are necessary to permit quantization. This implies restrictions on the structure
of the mass term (i.e., secondary constraints). We obtain these only if

n particular, the matrix 4° (which enters into the generator of changes in the
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field variables) is given by
A% =3 bourBirBec + N(BY D (BY) o) (3.3)

TFor a consistent quantization of the half-integral spin field ¥, it is necessary
that A° be positive definite or that secondary constraints occul: By elementary
means one can show that A° satisfies the characteristic equatifl

(A% — 2(1 + VA" = 30 = V@A + 1+ 0 =0 (34)
corresponding to the eigenvalues ’ :
—(142), THrax200—-x+D™

s of A. By a straight

ghow that the root

forms with spin 14

espond to spin 3.

$ for x = +1 the
pin 34 representa-

Thus, at least one of the roots is negative for arbitrary value
forward, but tedious analysis of the matrix algebra one can
—(1 4+ \) corresponds to the part of the field which trans
under spatial rotations while the two other eigenvalues corr
From the structure of the matrix it is thus clear that excep
submatrix of A° for the part transforming according to the s
tion under spatial rotations is indefinite and a consistent quantization is im-
possible. Let us hence consider the more complicated case with @ 0, x # 0.
The characteristic equation now becomes .
(4% — 2(1 +2)A4° = 3(1 — N’ (35
(A% + (1 + N — A" — 180 — k(1 -+ M = 0. o
TFor the free field (3.7) leads to the vanishing of one of the parts of ¢ which
transforms according to spin 14 under spatial rotations, and to determination
of the other spin 14 but as a nonlocal function of the spin 32 field.
In this fashion we see that of all possible spin 34 equatior' for “free” fields,
those which can be consistently quantized belong to a restrigted class for which
the Lagrangian matrix A° is singular and the dynamics is s restricted that of
the 12 components which one would normally expect to be dynamical actually
only 8 survive as true dynamical variables. The theory involves apart from the
mass m, a single constant w which can take any nonzero valu®- A theory of. pre-
cisely this type has been known for several years (2) Sowevel, the basic quan-
tity in it is a vector-spinor. In the Appendix we show the complete equivalence
of the two formulations.

IV. THE CHARGED SPIN 3 FIELP

We have found that the only form of a spin 34 theory which has the possi-
bility of consistent quantization in the absence of interactions is the vector-
spinor equation or is equivalent to it. For the purpose of the investigation of the
quantization of this equation when the field is charged and coupled to the elec-
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tromagnetic field it is most convenient to work with e veclorspior theary
essentially the form which was given by Rarita and “chwinger (25, Ior clarity,
we shall give an independent discussion of some of the mutterial given i Seetion
IT11 in terms of the vector-spinor formulation. Ir !his cise the Laprangian

matrices are
(A")Xo' = B('y“ng + W(a)‘“fyd_ + 6¢”—YX) | Ir"l.':'.-."r'l-"r.- 5 (4.1

where we have suppressed the spinor indices. W il /e real parameters
which we shall specify shortly. The form (4.1) is 'he most general with the
necessary properties of symmetry and Hermeticity oti1irei respectively by the
F.D. statistics of the field and the Hermitian characier of the held Lagringian
A" satisfies the equation

(4° — 1)((A%* — 2(2K — W)A® — (2K + &117 + 2 40 =0

and hence is indefinite as required by the general heoren We muy make A
singular by letting

K = —15(3W2+2W + I
(this corresponds to the condition «® = —Lgx in Section LT when we fud
A%A — (A" + 23w 43w + L1 =1L

so A is still indefinite. The field components whick Lrufislorm ax o spin 25 el
we shall find are those of the eigenvalue 1 which is ac-ordinely eightfold (2124, A
1)) degenerate. The eigenvectors of the eigenvalues !/t — 2031 4 311
turn out to correspond to spinors (S = 14) and the d-gcneracies we cansequently
four and four. However, the canonical variables wiiich correspand to the spin
3 field components are not simply the set of fiel! vnmponents deseribed by
the eigenvalue +1 of A° as we shall see below. .

The parameter W in the Lagrangian matrices is 11!l not fiseid b we make
the point transformation of the field components

'l’u,='pa+§7a'Yﬂ¢’ﬁ (4=

then the fields ¢/ will be characterized by Lagrang'®il matrices A7 which hawve
the same structure as the set A except that W is rejtcrd by

w=wl1 u K

2
Such a transformation merely mixes the two classes f =it v components bl
leaves the set of spin 34 components invariant. Colsequently, the particul

value of W is without physical significance (except for @ = 1 when the trans-
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formation is singular; this choice corresponds to w = 0 which was excluded in
Section III). All the Lagrangian matrices are hence equivalent. In most of the
following choose for convenience W = —1. In this case the projecti?n matrices
for the two sets of spin 14 components are :

P ))w = 35(8ua + gna)(—%'Ya'Yﬂ)}é(gﬂ' + 8)
and
(Po)p = }6(5;" - gw):

that is, the corresponding sets of components are v*¢* and y° which ‘We see are
indeed characterized by spin 34 for 3 dimensional rotations. The spin *2 com-
ponents, which are independent of the choice of W, are '

Vi = (8 + Ymev)y'. (4.3)
There is a one-paraiheter family of invariant matrices,
B = B(gas + Tvavs),

which also bave the necessary antisymmetry. If we write for the invariant
Hamiltonian

I =%+ YemyBy,
then the field equations will be
o3c’

AY(—id)¥ + (A~ +mBly = - =,
so we find the equations of constraint
4
PA*(—ia, +mBI(1 — Po)¥ + mPuBPo = —Po oy (44)

A consistent quantization requires that further restrictions be imposed upon
(1 — Py)y. Accordingly, PoBP, must be taken as singular if such restrictions
are to emerge from (4.4). We find that P,BPy = 0 if

T = Y4I(1 + 3W)* + 3(1 + W)

(which corresponds to the choice 8 = 14k of Section IIT). Thus, we choose this
value for T and thereby also find a unique mass term. Further, undes the trans-
formation (4.2), T — T" = 14[{(1 + 3“")2 + 3(1 + W) so the choice of W
is still completely free. With this choice of 7', the equations of constraint assume
the form

o3¢’

Pn(Ak(—’Lak) mB)( - Po)'/’ = "POW ’
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so if 3¢’ has the proper structure we will obtain four constraints on the twelve
components (1 — P,)y which should leave only eight kinematically independent
components which are characterized by spin 3.

We could, at this point, construct the commutation relations for the set of
kinematically independent free field components by letting 3¢’ = O which char-
acterizes the free field. However, we find it more convenient to take the free
field as a special case of the charged field in interaction with an external elec-
tromagnetic field.

We may represent a charged field by considering two neutral fields ¢, and . .
We take these to form a two-component set and let

A;‘—+A" ((1) 0).

We may also introduce the antisymmetrical Hermitian matrix
_ (0 —4

7=\ o
50 that we may construct a nontrivial vector density
: 3 = YAy
It would not be possible to construct a nontrivial conserved vector density
with a single Hermitian field because of the necessary symmetry of A* and the
basic anticommutativity of the Fermi fields. Because ¢ acts as the generator
of infinitesimal rotations in the two-dimensional charge space under which the
Lagrangian is invariant, the current j* will be conserved. We may mention here
that this j* is the most general conserved vector, i.e., if £ is invariant under
b = i\gy, then j* is conserved, other “possible” j*’s are conserved only with
Lagrangians which are more special. We shall couple the charged field to the
electromagnetic field only through the charge, thus, in the usual way, we let

X' = —e*@p, .

where @, is the potential which characterizes the external electromagnetic field.
This coupling is of course equivalent to the replacement

g —18, — —10, — eqQ, = ,

in the kinematic term in £.
In the absence of other interactions, the field equations are

DA% (—180 — eq@u)yY = —[4%(—18, — eq@s) + mBly,
nd hence the equation of constraint (4.5) is
Py(A*m. + mB) (1 — Po)y = 0, (4.6)
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which reads

(—3%6v-m + myy' — m(du + Yvir)y! = 0
so that the spin 14 field y#* is defined nonlocally in terms of the spin 33 field
components. In splte of the nonlocal character of this consfraint we qhdl find
that all of the components of the field satisfy local commutation relations.

If we insert (4.6) into the field equations for y° and (8, + »8y¢v1)¥: we obtain
the secondary set of constraints which will express the fields ¢’ in terms of the
kinematically independent components. These can be combined with the primary
constraints (4.6) so that we may write at a given space-tlme point the covariant
constraint

2
i : 3_’;. (2W + 1 )} v = degy Fa¥’ (4.7)
- 2
(which we have given for an arbitrary choice of W).

The commutation relations may now be derived using the generator

¢="1 [aovarn =% [ da[¢k<akz + %’Yk’)’z)&//z + g-mké(m“)]
together with the constraint (4.6) on the variations A"y on a given surface
(—24y-7 + m)o(v"™) — 1rk(6u + Yny)oy, = 0
Thus, we find (with the notation yi* = (Bu + Laveyi)dn)
(Wi’ (2), " ()
= (8o + Y470vs) (Bum + 267001 ) (Bt + Yoymyi) 8(z — ¥)  (48)

where A = (m® — 2%4ego-H)™*, which we notice 1s local in splt‘ Uf the non-local
character of the constralnt whlch expresses vy in terms of yi’. In (4.8) o is
the vector formed from the antisymmetrical tensor

1
o = 5 [y, 8]

and H is the magnetic field strength.
With the use of the constraint equation (4.6) we may derive the commutation
relations for the kinematically dependent components of the field. We obtain,

for example
(" (@), ¥} = (m + 2y m) Amn(dm + Yymyd) 0(x — ¥)  (49)

— [y (@), v ()} = Bl(m + 2y m)A(m — 2y-w) — sz —v).
(4.10)
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The remammg commutation relations are also local smce ¢l is locally given in
terms of vp* and yi* by (4.7).

-~ The consistency of the commutation relations depends upon the positive
definiteness of the matrices on the right-hand side of (4.8) and (4.10). For
simplicity consider (4.10). If ¢(x) is an arbitrary complex spinor function, then

/sa*(x){wﬁk(x),'mlfl(y)}go(y) dxdy = MM + MMt

= —f *(x)[(m + g-'y-r>A<m - gv-w) - 1] p(2) dx

‘where M = [¢*(z)vs"*(2) dz so as a consequence of the positive definiteness
‘of the operator on the left, the right side of (4.11) must be positive for arbitrary
spinors ¢(z). 2

 Let us define '

(4.11)

(m — %3y -m)e(z) = ¢(z)
it.then

MM + MM = gfw*(x)["A(x)é(x —y) —A(z, y) ¥ (y) (da)(dzx), '4.12)
'Where

Az, y) = (x| {m’ + 38’ (y-m)(v- o) | y) (4.13)

‘and consequently is a positive definite operator. Accordingly, for the positivity
-of (4.11), A must be a positive definite function. However since

A(z) = (m’ — 3geqo-H)™,

it is only positive if 2§ | eH | < m’ everywhere. Now we may quantize the field
in any Lorentz system and in each the commutation relations will have the form
sgeciﬁed, with H the magnetic field strength as measured in that frame. But for
a given external field we may always find a frame where 24 | eH | < m® is vio-
lated. Accordingly, the commutati_dn relations can be made to exhibit an in-
-consistency in any nonvanishing external field.

Since the commutation relations can be demonstrated to be inconsistent in
some frame (where the magnetic field is sufficiently strong) they must of course
be inconsistent in any frame if the field equations and quantization are formally
Lorentz covariant. But, it can be seen that a necessary and sufficient condition
for the positivity of any anticommutator is that A — A be non- negative, and it
'is easily demonstrated that for a constant magnetic field A — A is positive if
|eH | < m® It is clear that these two circumstances are incompatable with the
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Lorentz covariance of the theory since the strength of an electromagnetic field
depends upon the Lorentz frame in which it is observed.

V. THE BHABHA EQUATION

An equation which describes a particle with two mass states and spins 34 and:
14 respectively has been given by Bhabha (3) who formulated his theory in
terms of spinors with a field of 20 components which is the direct sum of the
representation D(1, 14) + D(34, 1) and the representation (14, 0) + D(0, }4)
twice. We shall use a reformulation of the theory due to Gupta (4) which makes
use of a vector spinor coupled to a Dirac spinor. It is advantageous to consider
the group of transformations admitted by such a coupled system to see the
equivalence of various formulations and to choose the simplest set of parameters
for direct algebraic manipulations. By virtue of the existence of this transforma-
tion group, without any loss & generality, a single coupling constant can be used
to characterize the system in the following fashion. Denote the irreducible parts
of the field by ¢, ¢1 , and ¢z . Any arbitrary coupling of ¢ with both ¢; and ¢ can
be reduced to a coupling of ¢, with only y. The terms involving ¢, only, as well
as those involving the coupling of ¢; and ¢ can be brought to standard form as
in the previously discussed case of spin 34. The only essentially new coupling
constant is now the coupling of ¢; and ¢. and, of course, the mass ratio of the
spin 34 and spin 14 states. The standard vector-spinor scheme that we use has a .
coupling scheme somewhat different from the above outline but we wish to
stress that the choice of this specific form involves no loss of generality; and |
since the reduction from the general form to the standard form is purely geo-
metrical, the presence of gauge-invariant electromagnetic interactions does not
destroy the validity of the above arguements.

The standard vector-spinor Lagrangian density for the Bhabha ﬁeld in an
external electromagnetic field is

L= _}é{‘puﬁ(wa’Ya + m)‘l’n‘_ }/3¢“ﬂ(7a7ra + ;"'n'Yv)‘//v ‘
+ L Bva(mva — m)Y¥s — $B(¥ Ta + ) (5.1)
— N¢BrYa + ¢ Brapl}

(all derivatives should be antlsymmetnzed) The equations of motion follow
in the standard fashion. The matrix A° is again a singular matrix but now of
rank 16 with the eigenvalues 1, —24, 0, 1 and the dynamics is restricted so as
to impose additional constraints and to eliminate the degree of freedom corre-
sponding to the negative eigenvalue (for “free” fields). The constraint equations
are obtained in a similar fashion to the vector-spinor case and serve to define
the parts v*¥, and ¢" in terms of the “transverse” vector-spinor

V' = + Yvevah
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and the spinor ¢ in the form
| 2 -1
M= e — | T 1.
T¥. = 3¢ [2_3)\2+33q‘7 Hl 5

3mA(m +«) |
2-3n %

o _o[—=3 2 e 3mn )|
12 —ﬁ{—2—¢+(m—§v~-> (\W'!l/a +——2~¢)j- (53)

Here, for simplicity, we have restricted ourselves to the case of a external mag-
netic field. The 8 independent components of yi’* and the 4 of ¢ form the 12
independent dynamical variables necessary to describe the 4 + 8 degrees of
freedom.

The generator of variations in the fields can be written down using the above

constraint equation in the Lagrangian density. It is
. 9 _
¢=%/ da{ Pad” + <1 + 3212> 959 — = smss}

where A is defined by (4.13) and

-{eqH Xy +

=g ¥4 3mA é.
z
We can insure that y;' and sy2/ are purely transverse by inserting the projection

operator
Crt = du + Yeviy:,

wherever y3” and 5y appear. A partial diagonalization can be accomplished
by the substitution

¢ = ¢ + mAE"Er-y*",
-where

' 22
3n;)\ i

3
E=1+ 5
The generator now becomes

= ’5 f do {¢'Ed¢’ + ¥i*Su syi”},

2
S“=[?<L——g1rCm>(P] , 0=(1 +?’-’-‘~)ZE‘1.
3 A 2
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The commutation relations can now be written down by inspection:
Wi (@), ¥i" (1)} = {®(1 + 247Dr)®}ui-8, D = (C* — 24x0r)”,
f¢'(2), ')} = E,
(¢'(x), ¥&" ()} = 0.
We now proceed to show that these commutation relations are inconsistent
in the presence of a strong external electromagnetic field in the sense that the

matrix appearing on the right-hand side of the anticommutator is not positive-
definite. For this purpose, split Sz in the following fashion:

U =ce¢{l — %x(C"' — DY 'x}e,
V = 0%x{D + (C' - D) 7'}»0.

Since U* = U and UV = 0 it is sufficient to show that V possesses at least
one negative diagonal element. For this purpose, choose

St=U+7V,

e = CumiC-w,

where w is an arbitrary spinor function. The diagonal matrix element with respect
to ¢, of the coefficient of §(x — y) in the anticommutator for ¢} is simply
3sfuw*(D — C)w. Now, C is positive definite:

e (o) + (0 %) (- 30e) (o)

but D is indefinite

' mx 9 -1
b= [m - 589"'1"]
and can be negative for sufficiently large values of H. Hence for this particular

case V and, consequently, S are not positive definite. The quantized theory
thus exhibits the same type of inconsistency as in the simpler case of spin 34.

V1. CONCLUSIONS

It is well to recapitulate the results obtained. The general theorem proved in
Section IT shows that the matrix A° which is fundamental in the (anti-) com-
mutator is always in indefinite matrix with the single exception of the Dirac
theory. This implies that in a consistent quantum theory of half-integral spin
fields, where the commutator matrix must be positive definite, there must be
secondary constraints. These occur because the primary constraints in general
lead to equations which produce certain relations among the “dynamical” field
components. The delicate balance which, for the free fields, produces a theory
which is compatable with the requirements of Lorentz covariance is upset in
the presence of an interaction with an external electromagnetic field. Our demon-
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stration has been in a sense indirect since we have shown that the equal time
commutation relations cannot be consistent with positive definiteness require-
ments in all Lorentz frames. A direct demonstration of the lack of covariance
would consist in showing that the generators of the infinitesimal Lorentz trans-
formations on the field components do not satisfy the structure relations asso-
ciated with the group. Because of the involved nature of this calculation we
shall reserve this more direct demonstration for a later communication.

One should stress that the anticommutator continues to be local in the pres-
ence of the interaction, at least in the cases studied by us in detail. It may also
be pointed out that the lack of consistency of the quantization of half integral
spin fields of higher spin manifests itself already at the kinematical level (but
because “kinematics’”’ here involves dynamics). This implies that no interaction
representation exists in these cases.

That the quantization of higher spin fields is not satisfactory has been gen-
erally felt, but we have been unable to find any proof of an inconsistency in the
literature. The only systematic attempt in this direction seems to have been
that of Weinberg and Kusaka (5) who claim to show that in the presence of
interactions with an external electromagnetic field all higher spin fields (>1),
both integral and half integral, acquire nonlocal (anti-) commutators which do
not vanish for space like separations, thus violating causality. We have, how-
ever, explicitly carried through the quantization of the spin 34 field in the
presence of an external electromagnetic field and have shown that the anti-
commutators ‘are local in all cases. :

Of course, charged Fermi systems of spin =34 and higher do exist, but they
do not admit a formulation in terms of a local action principle nor is their elec-
tromagnetic structure described solely in terms of the gauge-invariant replace-
ment 9, — 8, — egd, in their wave equations, i.e., by a local interaction. Those
charged systems that we know are complex nuclei which are “composite strue-
tures” in current theory. An elementary particle (such as the proton, for ex-
ample, is believed to be) while exhibiting a complex “low-frequency” structure
presumably preserves its kinematic properties for arbitrarily high-frequency
perturbations which extract the “bare’” particles or “field”; needless to say
this is the criterion for distinguishing fundamental fields furnished by local
relativistic quantum field theory. The results of the present investigation suggest
that any charged particle of spin 34 should be a composite structure in the sense
that for arbitrarily high frequency measurements no charged field with the
kinematic structure of spin 34 will survive. The final answer to the question of
whether local fields describe “elementary” particles must, of course, be found
in nature.
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APPENDIX. THE EQUIVALENCE OF THE MULTISPINOR AND VECTOR
SPINOR FORMULATIONS
The basic field quantity y* used in the vector spinor formulation carries an
explicit vector index and can be covariantly decomposed into two parts

Y= (¢ + M) — Yy = o — ',

which correspond to the representations D(1, 14) + (34, 1) and D(}3, 0) +
D(0, 14), respectively. The most general Lagrangian matrices are, respectively,

(A“)aﬁ = E‘”‘gaﬁ + I’VB('YabﬂP + 'Yﬁaa”) + Kﬁ'Ya'Yn'Yﬁ 3
B = Bgap + Tﬁ'Ya'YB

where the W, K, T terms correspond to the w, x, 6 terms of the multispinor
Lagrangian matrices. To see the correspondence more explicitly consider the
representation of ¢* by a multispinor:

= %Z Pabc(B’YH)abac'yXabc 3

where 1§, P is the symmetrising operator. The inverse transformation is given

by .
Xabe = 346" Z Pabc(ﬁ')’n)abac‘v‘?”l"'

To work out the complete set of correspondence relations, we rewrite the
vector spinor Lagrangian matrices in terms of ¢* and ¢ to obtain:

‘l’“{ﬂ'yaq;w + WB('Y,,B,,“ + 'Yvaua) + Kﬁ'Yu'Yu’Yv} ‘/’v = so"ﬂv"gma' ,
+ " [W5,” + By Brde + €Ws* + Hyatle” + (K + MW — 16)0By%.

If one makes use of the correspondence between tranceless vector spinors and’
totally symmetric multispinors, the identification with the multispinor La-.
grangian is immediate. «,

We notice that there is a one parameter family of transformations on both:
the fields and Lagrangian matrices simultaneously which leaves the physical
content of the theory completely unaltered. In the x, ¢(or ¢*, ¢) forms, this is:
simply a scale transformation of ¢ relative to x(¢") and a compensating change
in the 4* B. The parts involving ¢ once (or twice) get multiplied by the re-
ciprocal factor once (or twice). In the usual vector SpanI‘ form the significance:
is more obscure. (see (4.2)) Since the transformation is purely geometrical,
the presence of interactions does not interfer with the transformation group.,

In the construction of interactions, the coupling matrices, I, must be chosen
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so as to preserve the existence of secondary constraints, that is, they must satisfy
the equality

P oIP 0= 0‘
This is true, in particular, of gauge invariant electromagnetic interactions.
RecE1veD: October 13, 1960
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