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The relativistic quantum theory of Fermi Dirac fields of arbitrary spin is
investigated and a general theorem is proved which aserts that for fields of half
integral spin > ~21 the possibility of a consistent quantization requires that
the equal-time anticommutators must be functions of the other fields to which
the field in question is coupled. The case of spin % is studied in detail and the
equivalence of various forn1ulations of the theory is shown. The inconsistency
of the relativistic loca.l quantum theory of a charged spin % field in interaction
with all extern ILl electromagnetic field is demonstrated by showing that the
equal time commutation relations and relativistic covariance of the theory
are not compatible. Finally, the mixed spin ~2-spin ~2 (Bhabha) field is found
to be characterized by the same inconsistency.

I. INTRODUCTION

The description of physical states in terms of a relativistic field theory is

doubly covariant in the following sense: on the one hand, the complete set of

states of the quantized fields in virtue of the Lorentz covariance of the theory

yields a representation of the (inhomogeneous) Lorentz group, which is in gen-

eral reduc.ible. On the other hand, the fundamental field operators themselves

form the bases of (perhaps several) irreducible representations of the inho-

mogeneous IJorentz group. It is the mass and spin parameters of these irre-

ducible representations that are usually called the mass and spin of the fields
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that characterize the latter representations. For ~xample the Maxwell field is
characterized by zero mass while the states which correspond to an assembly
of photons yield a representation of the Lorentz group characterized by a finite
mass.

There, at present, is no objective criterion for postulating that a particular
particle is to be associated with a fundamental field. However, it is this associa-
tion that some believe distinguishes elementary particles from composite struc-
tures. In this paper it is the fields to which we refer arid if we say that a partic.le
of a certain type cannot exist we mean that it calmot be elementary in this
sense. We also assume that the primary kinematic characteristics of the par-
ticles, its spin, charge, isotopic spin, etc., are also characteristic of the field \vith
which it is associated and that the coupling of the field to others does not alter
these features.

Even in the classical theory the introduction of coupling between the fields
may materially modify the covariant significance of the set of solutions and one
must at each stage examine this aspect. Thus, for example, the requirement that
the classical Maxwell field should be the wave function of a null mass particle
of unit spin gives rise to the gauge invariance of the equations which requires
the coupling of the field to conserved currents. Then the solutions of the classical
equations with and without interaction then form a representation which is
continuous in passing from one to the other. (In particular the spin parameter
of the system is the same for both the free and coupled fields.) There is one
other requirement which is basic to the correspondence between the free and
coupled fields. That is, that the field without interaction can be formulated in
such a way that the introduction of coupling can be restricted to nonderivative
types. In this case the structure of the terms involving the field derivatives (the
so-called "kinematical" terms) will be the same for both the interacting and
noninteracting systems. For quantized fields whose dynamics follows from the
action principle, this has the consequence that the commutation relations are
independent of the dynamics, provided all the field components which are in-
dependent kinematically follows from the struc.ture of these terms (1). We shall
in fact sho\v that in the case of F. D. fields with components which transform
with spin ~ ~2', the circumstance just mentioned can never occur for a quantiz-
able theory. In fact, we shall show that the consideration of dynamics is essen-
tial in the discussion of the quantization. This is the first indication that the
consistency of covariant quantization imposes more stringent requirements than
that of a formal Lorentz covariance and a consistent free field quantization.

We use a local Lagrangian together with the action principle to characterize
the system since no other complete dynamical principle is kno\vn for relativistic
fields. .

In this paper we shall investigate the consequences of the fact that the dy-
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namics is essential for the quantization by studying the spin ~~ field and the
Bhabha field interacting with an ext.emal electromaguetic field. We shall find
that in both cases a consistent coyariant quantization is impossible.

II. A THEOREM ON THE KINEMATICS OF FERMI-DIRAC FIELDS

Let us first review the basic description which is used for a Fermi-Dirac
field ,vhich has no interllal degrees of spin other than its spin; The Lagrangian
for such a system ,vill ha ye the form ( 1) .1

£=~(I/IA"a"l/I-a"I/IA"I/I)-3C, (2.1)

where 3C is an invariant fUllction of the field components 1/1 and of all the other
fields to ,vhich they are coupled, (For the latter fields ,ve do not write the "kine-
matic terms" explicitly.) The field 1/1 is a set of Hermitian operators ,vhich are
coupled together in the kinematic term by matrices A" which we assume to
form an iI'l'educible set. For the Lagrangian to be Hermitian, the ma\rices A "

must be themselves Hermitian, Further, since we consider 1/1 to be -a Fermi-
Dirac field, these matrices are also symmetric and real.

From the action principle we obtain the field equations

'A" .1. 8.3C 8j3C (2 2)~ a" 'I' = --r;;j; = -r;;j; , .

,vhere the subscripts r and l signify, respectively, the right and left derivatives
of JC(l). 1'hese are formed by factoring to the right or left in the differential of
JC the anticommuting variations of the field components. The operator generator
of this same class of infinitesimal variations of 1/1 is

G = ~ f du I/IAo81/I, (2.3)

The matrix Ao may be singular and only the field components ,vhich appear
in the generator, namely those in the non-null space of A o will be candidates

for independent variation by G. We say "candidates" since the field equations
(2.2) may impose further constraints (i.e., relations bet,veen field components
,vhich do not involve time derivatives) on these field components so that the
variations 81/1 ,vhich appear in (2.3) are not independent. To clarify this situa- I
tionlet us discuss the structure of the field equations (2.2) briefly. Let Po be the
projection matrix on the llUll space of Ao so that PO2 = PoandPoAo = 0. Then

from (2.2) we have the follo,ving equations of constraint:

.k 8j3C~PoA akl/l = Po W .

1 We use units where h = c = 1 and a real space-like metric (g"" = ( -I, 1, I, I) ) .Greek
indices run from O to 3 while Latin indices run from I to 3.



129SPIN% PARTICLES

rsince the A k are linearly related to A o by an infulite~mal Lorentz transformation

(see Eq. (2.7) below), it follows that PoA kpO = O and consequently the con-
straint equations may be written .

(2.4)

These constraints emerge solely as a consequence of the kinematics of the field
.; ( that is, the singular property of A 0) .The definition of the kinematically
dependent field components P01/l is totally independent of the dynamic(1.l term
:JC. We shall call (2.4) "primary constraints" to distinguish them from pos.~ible
"secondary constraints" which define a second set of kinematically dependent
components ,v hose structure is dependent on the dynamics.

The left side of (2.4) does not contain the field components P01/l (l.nd one or
both of two possibilities may arise. First, the right side of (2.4) may contain
certain ( or all) of the field components P01/l in sueh a 'v ay that we may express
them in terms of the components (1 -Po)1/l. If all of the components are so
expressed, the remaining equations (2.2) become equations of motion for the
dynamical components (1 -Po)1/l and they are accordingly eapable of arbitrary
variations at a single time. The second possibility occurs 'v hen some ( or all )
of the field components P01/l are left undetermined by Eq. (2.4) but instead
additional constraints are imposed upon some of the components (1 -Po)1/l at
a given time; in this case not all variations (1 -Po)61/l are independent. 1'here
are two sub-alternatives at this point. First, these equations in conjunction with
the remaining field equations may degenerate and no longer involve. the field
.;. Electrodynamics is such a theory and in general this situation occurs \V hen
the mass is zero and the field equations are invariant under some group of trans-
formations involving arbitrary functions, such as gauge transformations. In
electrodynamics, the degenerate field equation is the la\v of charge conservation.
The second alternative is that the equations in conjunction \vith the remaining
field equations cause a further separation which results in the existence of ne,v
(~econdary) equations of constraint. It is possible that these secondary CO..l-
straints may then determine the remaining components from the set Pol/l or the
\V hole process may repeat. Thus, if the secondary equations do not. fix the un-
determined components (I -Po)1/l, these equations together ,vith the remaining
field equations will again separate to produce tertiary equations of constraint.
The process \vill finally terminate since there are a finite number of components
for 1/1. It is important to emphasize that the secondary (and higher) constraints
define kinematically dependent sets of field components 'v hose structure is
dependent on the dynamical term.

We shall now show that the last of the altenlatives mentioned above must
occur for the field equations if the field 1/1 is to be quantized consistently accord-
inl! to the Fermi-Dirac statistics and has spin ~ ~'6. For this let us assume t,hat.
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there are no constraints on the components ,j; = ( 1 -Po)1/l and show that
results in a contradiction; for, in this case, the variations 8,j; = (1 -Po)81/l
independent and with the aid of the generator (2.3) we may derive the

time ( anti- ) commutation relations ( 1 )

{,j;a(X), ,j;p(y)} = [(1 -Po)A 0(1 -Po)];~8(3)(X -y),

,v here the matrix is inverted in the nonsingular subspace. If these
relations are to be consistent, ( 1 -Po)A 0( 1 -Po) must be a positive ~~.~..vv
matrix since 1/1 a form a set of Hermitian operators, hence the left-hand side of
(2.5) is positive-definite. We shall now show that (1 -Po)AO(l -Po) is in-

definite if the field 1/1 has spin > ~-2 so that the quantization implied by (2.5)
cannot in fact be carried out consistently. The only alternative is to insure that
the variations 8,j;a are not independent so that (2.5) would not follow; for this
it is necessary that the field equations must always impose relations among the
field components A 01/1. These relations must be found among the primary con-
straints and therefore depend on the structure of :JC. These constraints must
restrict the fields 1/1 in such a manner that the generator (2.3) expressed in terms
of a truly independent field components and their variations involves a matrix
A (related to A 0) ,vhich is positive definite. We can summarize this discussion
as follows. The requirement that some of the primary constraints give relations
among the components A 01/1, means that secondary constraints must appear. It
,vill turn out that for spins ~ ~-2 these secondary constraints are essential whether
or not the matrix A ° is initially assumed to be singular. In any theory involv!ng

F'ermi-Dirac fields which has the possibility of being consistently quantized
the matrix A ° must always be singular and both primary and secondary con-

straints must be present.
To demonstrate that A ° is indefulite ,ve make use of the invariance of the

theory under the transformations col1Stituting the homogeneous Lorentz group.
If SaP are the infinitesimal generators2 of this group, the Lagrangian matrices
A " satisfy the relations

S~pA" + A"SaP = i(Aa8p" -Ap8a"). (2.6)

If we specialize to the case of simple Lorentz transformations we get

SrkAO + AOS4k = Ak, \-..,'

.r;:;..A k -1- A k s". = A 0. \

(?7)

, ---~- (? ~)
,

\V here i8o" = 84" is a real symmetric matrix. If we substitute (2.7) in (2.8)

.The matrices: iSaP have real elements since they describe the transformation of
mitian field components into Hermitian field components. Sok is symmetric and Ski is

symmetric.
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find

.20 02 0 0 )S4kA + A S4k + 2S4kA S4k -A = 0. (2.9

The proof that A 0 is nondefinite follows directly from ( 2.9) .Without loss of

generality we may assume that the set A1' is irreducible, because if they were
not, one set of components of \,lI could be covariantly separated from the rest
and hence the theory would reduce to that of t\VO fields coupled in some ,vay
and the quantization could be treated separately for each field. If A 0 is assumed

positive, then it has a lowest eigenvalue A ~ 0.
Let PA be the projection matrix which satisfies

PA(A 0 -A) = 0 = (A 0 -A)PA .

Then from (2.9) it follows that

2PAS4k(1 -PA)(AO -A)(l -PA)S4kPA

= -AP>.((2S4k)2 -I)P>. .(2.10)

Since (1 -P>.)(Ao -A)(1 -P>.) is positive definite the left side is positive
semidefinite. The right side is negative semidefinite. Hence, both sides must
vanish. Since S4k is a real matrix, the vanishing of the left side means that

P>.S4k(1 -P>.) = 0.

But if P>. # 1, this leads to the result that P>.A 1'(1 -P>.) = 0 which contradicts
the assumption of the irreducibility of the set A 1'. Consequently,

(1 -P>.)(Ao -A)(1 -P>.)

is indefulite unless P" = 1. In the latt~r case we have from the right side of

(2.10)

(2S4k)2 = 1.

That is, the spin of the field is ;'2'. Thus, if A o is to be positive it must be a mul-

tiple of the unit matrix and the spin of the field must be ;'2'.
We may thus draw the conclusion that the kinematics of all Fermi-Dirac

fields of spin ~2' will necessarily involve the dynamics of the field if they have
the possibility of a quantization. This is consequent on the indefinite nature of
A 0 in all such theories ,vhich necessitates the imposition of secondary constraints.

It is for this reason that the free field quantization is completely ,vithout interest
since even the equal-time commutation relations for the free and for the coupled
fields are distinct ( no interaction representation exists) .We shall further find
that in the case of spin ~2' though it is possible to quantize the free field con-
sistently, the commutation relations for a charged spin ~,,2' field coupled to an
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external electromagnetic field only by its charge (i.e., "minimally") are incon-

sistent for any nonvanishing external field.

III. CLASSIFICATION OF SPIN ~~ KINEMATICS

An explicit example of the theorem presented in the previous section is pro-
vided by the kinematics of a spin ~~ field. In accordance with the general action

principle the system is completely specified by the local Lagrangian density
(2.1). If we restrict ourselves to a free field, the dynamical term becomes,

:JC = ~~m1/IB1/I,

where because of the Fermi statistics B is a numerical matrix satisfying the

relation
-; BT = B = B+ ,

and whose structure ,vill depend upon the precise nature of the system. In
the usual theory (2), 1/1 is a 16-component entity and is the direct sum of the

12-component :D( 1, 7:2) + :D (7:2, 1) representation and the 4-component

:D(7:2, 0) + :D(O, 7:2) .

representation of the homogeneous Lorentz group, Relativistically, the field
:D( 1, 7:2) + :D( 7:2, 1) is not the only irreducible representatiqn which exhibits
a maximum spin of ~:2 since there exists the 8-component :D(~:2, 0) + :D(O, ~:2)
representation. We shall. consider the most general equation which involves the
8-component entity in addition to the 16-component vector spinor which thus

contains 8 + 12 + 4 components.
A very convenient method of treating such a field is provided by the theory

of ( totally) symmetric multispinors. The number of independent components
of a third-rank symmetric multispinor q,abc is 4.5.6/1.2.3 = 20. Here q,abc trans-
forms as the direct product of 3 spinors 1/Ia(1)1/Ib(2)1/Ic(3). It can easily be shown

that they correspond to the direct sum of the 8 and 12 component representa-
tions mentioned above. The projection matrix to the :D(I, 7:2) + :D(7:2, 1) part

of the multispinor is,

7~[3~"a'~bb'~cc' -~"a"Y~b"Y~cl -'Y:a/~bbl'Y~c' -'Y:al'Y~b'~cc' ].

We shall need one more result from the theory of multispinors,3 namely that
all invariants that can be constructed can be expressed in terms of the two
fd l ' ' d 666666un amenta mvanants ~aa'~bb'~cc' an ~a,,"Ybb"Ycc' + 'Yaa'~bbl'Ycc' + 'Yaa"Ybb'~cc' .As a
consequence, the most general form for the Lagrangian matrices A 1&, B are,

a This and many other res\uts have been derived by the authors and J. Schwinger (un-

published).

f
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AI' =L (.8'YI')aa;.8bb'.8cc' + AL (.8'YI')aa'(.8'Y5)bb'(.8'Y5)CC'

~ (3.1)
-i",L. [(.8.yI')ab.8cd' + (.8'YI')a'b'.8c'd] + K(.8'YI')dd' ,

B = .8aa'.8bb'.8cc' + A'L .8aa'(.8'Y5)bb'(.8'Y5)CC' + (}.8dd' , (3.2)

where the sum is overall possible permutation of the Dirac matrices and where
'YI'* = -'YI' , 'YI'T = -.8'Y,.B, .8 = 'Yo = -'Yo which is a Majorana representation.

We have absorbed an overall normalization into the definition of the unit of
length. The index d refers to the 4 component single-index spinor :D(7'2.. 0) +
~(o, 7'2) which together with </Iabc comprises the 24 components of t/r.

Let us first consider the simple case where the 4-component spinol' is not
present. In this case (0) = K = (} = 0 and the vector matrix A I' assumes the
simpler form,

A" =L ({3'Y")aa'({Jbb'{Jcc' + A({J'Y5)bb'({J'Y5)cc').

Again, it can be shown that the two factors correspond to a decomposition of
lit according to spin ~~ or spin >2 under space rotations. One immediately notices
that the indefiniteness of the spin ~~ is unaltered; both the spin ~.~ and spin >~
parts have indefinite submatrices in general.

For a consistent quantization one is thus forced to do the follo\ving: put.
A = 1 so that the spin ~~ submatrix becomes non-negative. This makes A ()

singular, but the singular part \vhich corresponds to the 8-component

:D(~2, 0) + :D(O. ~-?:)

(AO)2 + (2- K)Ao -2" = 18",2

positive, these quantities must be chosen so as to produce primary constraints.
For this purpose one has to choose "' so that A o becomes singular: one obtains,

",2 = -7§". (3.6)
At this stage A o is singular but still is indefinite. The singular nature ofA ° leads

to the primary constraints but in vie\v of the indefiniteness further restrictions
are necessary to permit quantization. This implies restrictions on the structure
of the mass term (i.e., secondary constraints). We obtain t~se only if

O = 7'2,,0. (3.7)

[n particular, the matrix A o ( which enters into the generator of changes in the
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(3.4)

field variables) is given by

Ao = )=: 8aa,[{3bb'{3cc' + ~({3'Y5)bb'({3'Y5)cc'J..

For a COllsistent quantization of the half-integral spin field 1/1, it is

that A o be positive definite or that secondary constraints occur. By v.v..

means one can sho,v that A o satisfies the cha,racteristic equation

[(AO)2- 2(1 + ~)Ao -3(1- ~)2](Ao + 1 + ~) = 0,

corresponding to the eigenvalues

~ (1 + ~), 1 + ~ ::I:: 2(~2 -~ + 1)112.

Thus, at least one of the roots is negative for arbitrary values of A. By a

for,vard, but tedious analysis of the matrix algebra one can show that the .

-(1 + A) corresponds to the part of the field ,vhich transforms ~ith spin

under spatial rotations ,vhile the t'vo other eigenvalues correspond to spin

From the structure of the matrix it is thus clear that except for A = + 1

submatrix of A o for the part transforming according to the spin ~i

tion under spatial rotations is indefinite and a consistent quantization is ,

possible. Let us hence consider the more complicated case with", ~ 0, K ~

The characteristic equation now becomes

[(AO)2 -2(1 + A)Ao -3(1 -~)2]
O 2 O 2 (3

[(A ) + (1 + A -K)A -18", -K(l + ~)] = 0.

For the free field (3.7) leads to the vanishing of one of the parts of 1/1

transforms according to spin 7i under spatial rotations, and to ~vvv of the other spin 7i but as a nonlocal function of the spin ~i field.

In this fashion ,ve see that of all possible spin ~i equations for "free"

those which can be consistently quantized belong to a restricted class for .,..

the JJagrongian matrix A O is singular and the dynamics is so restricted that

the 12 components which one ,vould normally expect to be dynamical

only 8 survive as true dynamical variables. The theory involves apart

mass m, a single constant", which can take any nonzero value. A theory of

cisely this type has been kno,vn for several years ( 2) .aIowever, the

tity in it is a vector-spinor. Inn the Appendix we sho,v the complete

of the t'vo formulations.

IV. THE CHARGED SPIN % FIELD

We have found that the only form of a spin ~-?: theory which has the
bilit.y of consistent quantization in the absence of interactions is the
spinor equation or is equivalent to it. For the purpose of the ~
quantization of this equation ,v hen the field is charged and coupled to the
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tromagnetic field it is most convenient to work with the vector-spinor theory in
essentially the form which was given by Rarita and Schwinger (2) .For clarity,
we shall give an independent discussion of some of the material given in Section
III in terms of the vector-spinor formulation. In this case the Lagrangian
matrices are

(AI').~ = {3('Yl'g).~ + W(8).1"Y~ + 8~1"Y).) + K'Y).'YI"Y~), (4.1)

where we h~ve suppressed the spinor indices. Wand K are real parameters
which we shall specify shortly. The form ( 4.1) is the most general ,vith the
necessary properties of symmetry and Hermeticity required respectively by the
F.D. statistics of the field and the Hermitian character of the field Lagrangian.
A o satisfies the equation

(Ao- 1)(Ao)2 -2(2K -W)Ao -(2K + 3W2 + 2W + 1)) = O

and hence is indefinite as required by the general theorem. We may make A o

singular by letting

I( = -~2(3W2 + 2TV + 1)

(this corresponds to the condition ",2 = -~9'K in Section III) when we find

Ao(Ao- 1)(Ao + 2(3W2 + 3W + 1)) = 0,

so A o is still indefinite. The field components which transform as a spin ~,2 set

we shall find are those of the eigenvalue 1 which is accordingly eightfold (2(2~2 +
1)) degenerate. The eigenvectors of the eigenvalues 0 and -2(3W2 + 3W + 1)
turn out to correspond to spinors (8 = ~2) and the degeneracies are consequently
four and four. However, the canonical variables ,yhich correspond to the spin
~2 field components are not simply the set of field components described by
the eigenvalue + 1 of A 0 as ,ve shall see belo,y.

The parameter W in the Lagrangian matrices is still not fixed. If 'ye make
the point transformation of the field components

(4.2)

then the fields 1/1' will be characterized by Lagrangian matrices A' which have
the same structure as the set A except that W is replaced by

It
2

W' = W(l p.)

Such a transformation merely mixes the t'vo classes of spin 7-?; components but
leaves the set of spin ~-?; components invariant. Consequently, the particul[tr
value of W is without physical significance ( except for Jl. = 1 ,v hen the trans-
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formatioll is singular; this choice cOITesponds to "' = O ,vhich was excluded in
Section III). All the Lagrangian matrices are hence equivalent. In most of the
follo,ving choose for convenience }V = -1. In this case the projection matrices
for the t'vo sets of spin 7'2 components are

(I:> ' = ~(~,.a + g,.a)(-7'3'Ya'Y~)7'2(g~, + ~~,)
-2 J ...

and

(Po),.. = ~'2(8,.. -g,..),

that is, the coITesponding sets of components are 'Ykl/tk and I/to which we see are
indeed characterized by spin ~~ for 3 dimensional rotations. The spin ~'2 com-
ponents, ,vhich are independent of the choice of W, are

1/t~/2 = (8kl + ~'Yk'YJI/t'. (4.3)

There is a one-parameter family of invariant matrices,

Ba~ = .B(ga~ + T'Ya'Y~),

,vhich also have the necessary antisymmetry .If we Wlite for the invariant
Hamiltonian

x = x' + ~mI/IBI/I,

then the field equations will be

63C'

~JI ,
A 0( -iOo)1/I + [A k( -iOk + mB]'/I = -

so ,ve find the equations of constraint

PJAk(-ia~ (4.4)

A consistent quantization requires that further restrictions be imposed upon
(1 -Po)"'. Accordingly, PoBPo must be taken as singular if such -,, 1vu.~...
are to emerge from (4.4). We find that PoBPo = O if

T = 7'4[(1 + 3W)2 + 3(1 + JV)2]

(\vhich corresponds to the choice e = ~~K of Section III). Thus, we choose this

value for T and thereby also find a unique mass term. Further, under the trans-
formation (4.2), T- T' = ~;i[(1 + 3JV')2 + 3(1 + W') so the choice of W

is still completely free. With this choice of T, the equations of constraint
the form

63C'
-Po)"' = -Po -;;;j; ,mB)(PI1(Ak(-idk) 4
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~so if X' has the proper structure ,ve will obtain four constraints on the twelve
components ( 1- Po)1/t which should leave only eight kinematically independent
components which are characterized by spin ~'i.

We could, at this point, ~onstruct the commutation relations for the set of
kinematically independent free field components by letting x' = 0 which char-
acterizes the free field. Ho,vever, we fuld it more convenient to take the free
field as a special case of the charged field in interaction with an external elec-
tromagnetic field.

We may represent a charged field by considering two neutral fields I/tI and 1/t2 .
We take these to form a two-component set and let

A~~Ai' (~ ~) .

We may also introduce the antisymmetrical Hermitian matrix

= (0 -i )q . 01.

,
so that we may construct a nontrivial vector density

, jl' = ~'21/IqA 1'1/1.
"
qt would not be possible to construct a' nontrivial conserved vector density
with a single Hermitian field because of the necessary symmetry of A I' and the

basic anti commutativity of the Fenni fields. Because q acts as the generator
of infinitesimal rotations in the two-dimensional charge space under which the
Lagrangian is invariant, the current jl' will be conserved. We may mention here
that this jl' is the most general conserved vector, i.e., if £ is invariant under
~"' = ic5Aq1jI, then jl' is conserved, other "possible" jl"s are conserved only with

Lagrangians which are more special. We shall couple the charged field to t.he
electromagnetic field only through the charge, thus, in the usual way, ,ve let

3C' = -ejl'(tp.,

where (tl' is the potential which characterizes the external electromagnetic field.
This coupling is of course equivalent to the replacement

.5 .I -'lu..~ -'liJ" '- eq(tl"= 11"1'

in the kinematic term in £.
In the absence of other interactions, the field equations are

A 0( -i~o -eqao)y, = -[A k( -iak -eqak) + mB]y"

nd hence the equation of constraint ( 4.5) is

P9(A k7rk + mB) (1 -Po)Y' = 0, (4.6)
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,vhich reads

(-7~"1.7r + m)"1!I/l! -7rk(5kl + 7~"1k"1JI/I! = O

so that the spin 7'2 field "1!1/1! is defined nonlocally in terms of the spin ~'2
components. Inn spite of the nonlocal character of this constraint we shall
that all of the components of the field satisfy local commutation relations.

If ,ve insert ( 4.6) into the field equations for I/lo and ( 5kl + , , .-
the secondary set of constraints which will express the fields 1/1° in terms of
kinematically independent components. These can be combined with
constraints ( 4.6) so that ,ve may ,vrite at a given space-time point the

constraint

(4.7)
( !!:: eqO"F -
I')

(4

~ (2W + 1) } 'Yu1/lu = ieq'YAFAu1/Iu
1- -~

( which we have given for an arbitrary choice of W) .
The commutation relations may now be derived using the generator

i J ° i J [ ( 1 ) 2 k ( I)G = 2 du 1/IA 81/1 = 2 du 1/Ik 8kl + 3" 'Yk'YI 81/Iz + 3"1/Ik'Y 8 'Y11/I

together with the constraint ( 4.6) on the variations A 081/1 on a given

(-~3"Y.7r + m)8('Yk1/Ik) -7rk(8kl + ~3"Yk'YI)81/I1 = O

Thus, ,ve find ( with the notation 1/I~/2 = ( 8kl + 7-3'Yk'YI)1/Iz)

{1/I~/2(X), !/I~/2(y)1

= (8kn+ 7-3'Yk'Y")(8",,, + 33'7r"tJ.7rm)(8ml + 7-3'Ym'Yz) .8(x -y)

where tJ. = (m2 -~3'equ.H)-l, ,vhich we notice is local in spite of the ~~...~
character of the constraint ,vhich expresses 'Yk1/lk in terms of 1/I~/2. In ( 4.8) u
the vector formed from the anti symmetrical tensor

1,(Jkl = 2 ['Yk. fJJ

and H is the magIletic field strength.

With the use of the constraint equation ( 4.6) we may derive the ,,~ relations for the kinematically dependent components of the field. We

for example

l'Yklot'k(X), Iot'~J2(y)J = (m + ~'3'Y.7r)~7rm(5ml + 7'3'Ym'Yl) .5(x -y) "

-1'Yklot'k(:r), 'Yllot'l(y)J = %[(m + ~'3'Y.7r)~(m -~'3'Y.7r) -1]8(x -y).

(4.
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The remaining commutation relations are also local since I,b° is locally given in
k 312terms of 'Ykl,b and I,bk by (4.7).

c The consistency of the commutation relations depends upon the positive

definiteness of the matrices on the right-hand side of ( 4.8) and ( 4.10) .Ij'or
simplicity consider (4.10). If rp(x) is an arbitrary complex spinor function, then

'I'*(X) {'YkI/Ik(X), 'YII/II(y) }'1'(Y) dxdy = MtM + MMt

(4,11)
= ~ J tp*(X)[ ,m + ~ 'Y"lf )A( m -~ 'Y°'lf,' -iJ tp(x) dx

;;\yhere M = ftP*(X)'YkI/Ik(X) dx so 38 a consequence of the positive definiteness

6£ the operator on the left, the right side of ( 4,11) must be positive for arbitrary

;~pinors tp(x), i'. Let us define

(m -%'Y.1r)'P(:!:) = 1/1(:!:)

;then

MtM + MMt = ~ f \l'*(x)[j).(x)8(x -y) -~(x, y)]\l'(y) (d:l;)(dx), '4.12)

,
where

"
~:;; ,~(x, y) =. (x I {m2 + (%)2('Y'7r)('Y'7r)tj-ll y) (4,13)

~nd consequently is a positive definite operator, Accordingly, for the positivity
of (4,11), ~ must be a positive definite' function, However since

~(x) = (m2 -%eqD"H)-l,

it is only positive if % I eH I < m2 everywhere. Now we may quantize the field
in any Lorentz system and in each the commutation relations \vill have the form
s~cified, with H the magnetic field strength as measured in that frame. But for
a given external field we may always find a frame where ~:11 eH I < m2 is vio-
lated. Accordingly, the commutation relations can be made to exhibit an in-
consistency in any nonvanishing external field.

Since the commutation relations can be demonstrated to be illconsist.ent in
some frame (where the magnetic field is sufficiently strong) they must of course
be inconsistent in any frame if the field equations and quantization are formally
Lorentz covariant. But, it can be seen that a necessary and sufficient condition
for the positivity of any anticommutator is that ~ -~ be non-negative, and it
Is easily demonstrated that for a constant magnetic field ~ -~ is positive if
1 eH I < m2. It is clear that these t'vo circumstances are incomDat.able ,vit.h t.h~
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Lorentz covariance of the theory since the strength of an electromagnetic field
depends upon the Lorentz frame in which it is observed.

v. THE BHABHA EQUATION

A11 equation which describes a particle with two mass states and spins ~i and
7i respectively has been given by Bhabha (3) who formulated his theory in
terms of spinors ,vith a field of 20 components which is the direct sum of the
representation ~(1, }i) + ~(72', 1) and the representation ~(7i, 0) + ~(O, 7i)
twice. We shall use a reformulation of the theory due to Gupta ( 4) which makes
use of a vector spinor coupled to a Dirac spinor. It is advantageous to consider
the group of transformations admitted by such a coupled system to see the
equivalellCe of various formulations and to choose the simplest set of parameters
for direct algebraic manipulations. By virtue of the existence of this transforma-
tion group, without any loss.. generality, a single coupling constant can be used
to characterize the system in the follo,ving fashion. Denote the irreducible parts
of the field by 1/1, If>l , and 4>2 .Any arbitrary coupling of 4>2 with both If>l and 1/1 can
be reduced to a coupling of 4>2 with only 1/1. The terms involving 4>2 only, as well
as those involving the coupling of If>l and 1/1 can be brought to standard form as
in the previously discussed case of spin ~i. The only essentially new coupling
constant is now the coupling of If>l and 4>2 and, of course, the mass ratio of the
spin ~i and spin 72' states. The standard vector-spinor scheme that we use has a
coupling scheme some,vhat different from the above outline bu~ we wish to
stress that the choice of this specific form involves no loss of generality; and
since the reduction from the general form to the standard form is purely geo-
metrical, the presence of gauge-invariant electromagnetic interactions does not
destroy the validity of the above arguements. ;

The standard vector-spinor Lagrangian density for the Bhabha field in an

external electromagnetic field is c
£ = -7iI1/Ii'fJ(7r"'Y" + m)1/li' -~1/Ii'fJ('Y,,7r" + ;..i"Y")1/I"

,
+ 7-3'1/Ii'fJ'Yi'(7r"'Y" -m)'Y21/I2 -If>fJ('Y"7r" + K)1f> (5.1)!

-A[lf>fJ7r"1/I" + 1/I"fJ7ra4>]} c

(all derivatives should be antisymmetrized). The equations of motion follow
in the standard fashion. The matrix A ° is agai11 a singular matrix but now of

rank 16 with the eigenvalues 1, -%, 0, 1 and the dynamics is restricted so as
to impose additional constraints and to eliminate the degree 0£ £reedom corre-
sponding to the negative eigenvalue (for "£ree" fields). The constraint equations
are obtained in a similar fashion to the vector-spinor case and serve to define
the parts 'Yi'1/l1' and 1/1° in terms of the '"transverse" vector-spinor

1/1312 = I/Ik + ~'Yk'Yll/Il
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and the spinor rp in the form

".1. -'Y Y'" - 3Aq, -

o {-3X ( -i' 312 3mX )l1/1 = .8 ~I/> + m- ~ ' ,.-. \ 7r'1/l + 21/> f. (5.3)

Here, for simplicity, we have restricted ourselves to the case of a external mag-
netic field. The 8 independent components of 1/1:'2 and the 4 of 1/> form the 12
independent dynamical variables necessary to describe the 4 + 8 degrees of
freedom,

The generator of variations i11 the fields can be written do,vn using the above
constraint equation in the Lagrangian density. It is

G = ~ J du { 1/1:/201/1:/2 + ( 1 + 3~ ) 1/>01/> -~ ~:60~ }

where :6 is defined by (4.13) and

~ 'Y... )::J

i;=7r
2

(J>kl = 6kl + 7~'Yk'YI ,

wherever 1/Ir2 and 61/1:/2 appear. A partial diagonalization can be accomplished

by the substitution

!/J' = !/J + m;\E1/2~7r.1/I3/2,

where

E=l+~
'3m2A2 -
-A.

2 2

The generator now becomes

<p ] ,
kl

Ski = <P
2

1 --7rC7r
3

3,2 + 3mX
-1!>.
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The commutation relations can no\v be written do,vn by inspection :

{1/tZ/2(;I:),1/t~/2(y)1 = {<P(1 + ~31J"D1J")<P}kl.8, D = (C-1 -%1J"<P1J")-1,

ll/l'(x), I/I'(Y)} = W\

{1/I'(x),1/t~/2(y)} = 0.

We no\v proceed to sho\v that these commutation relations are inconsistent
in the presence of a strong external electromag11etic field in the sense that the
matrix appearing on the right-hand side of the anticommutator is not positive;;
definite. For this purpose, split Ski in the following fashion:

U = <P{1 -%"E(C-1 -D-1)-1"E}<p,
8-.1= U+V , V = <P%"E{D + (C-1 -D-1)-1}"E<p.

Since U2 = U and UV = 0 it is sufficient to show that V possesses at least

one negative diagonal element. For this purpose, choose

'Pk = <Pkl1J"IC.W,

,vhere w is an arbitrary spinor function. The diagonal matrix element with respect
to 'Pk of the coefficient of 8(x -y) in the anticommutator for 1/t:/2 is simply
~'2fw*(D -C)w. No\v, C is positive definite:

, 3)..2) { , 3)..2) ( 2 + ( 2 )}-1 1 + 2 m2 + : + 2 m -3'Y.1J" m -3'Y.1J" ,
c=

hut D is ind~finite

[ ml 2 J-I
D = 1 + 3AI/2 -3 equ.H

alld call be negative for sufficiently large values of H. Hence for this particular
case V and, consequently, S-I are not positive definite. The quantized theory
thus exhibits t.he same type of iIlconsistency as in the simpler case of spin %.

VI. CONCLUSIONS

It is ,veIl to recapitulate the results obtained. The general theorem proved in
Section II sho\vs that the matrix A o which is fundamental in the ( anti- ) com-

mutator is al,vays iIl iIldefinite matrix ,vith the single exception of the Dirac
theory. This implies that in a consistent quantum theory of half-integral spin
fields, 'v here the commutator matrix must be positive definite, there must be
secondary constraints. These occur because the primary constraints in general
lead to equations ,vhich produce certain relations among the "dynal11ical" field
components. The delicate balance which, for the free fields, produces a theory
,vhich is compatable with the requirements of Lorentz covariance is upset in
t,he oresence of an interaction "ith an external electromagnetic field. Our demon-
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stration has been in a sense indirect since we have sho\vn that the equal time
commutation relations cannot be consistent with positive definiteness require-
ments in all Lorentz frames. A direct demonstration of the lack of covariance
would consist in showing that the generators of the infinitesimal Lorentz trans-
formations on the field components do not satisfy the structure relations asso-
ciated with the group. Because of the involved nature of this calculation \ve
shall reserve this more direct demonstration for a later communication.

One should stress that the anticommutator continues to be local in the pres-
ence of the interaction, at least in the cases studied by us in detail. It may also
be pointed out that the lack of consistency of the quantization of half integral
spin fields of higher spin manifests itself already at the kinematical level ( but
because "kinematics" here involves dynamics) .This implies that no interaction
representation exists in these cases.

That the quantization of higher spin fields is not satisfactory has been gen-
erally felt, but we have been unable to find any proof of an inconsistency in the
litoerature. The only systematic attempt in this direction seems to have been
that of Weinberg and Kusaka (5) who claim to show that in the presence of
interactions with an external electromagnetic field all higher spin fields ( > 1) ,
both integral and half integral, acquire nonlocal ( anti- ) commutators ,vhich do
not vanish for space like separations, thus violating causality. We have, how-
ever, explicitly carried through the quantization of the spin ~.2 field in the
presence of an external electromagnetic field and have sho\vn that the anti-
commutators 'are local in all cases.

Of course, charged Fermi systems of spin ~ ~2 and higher do exist, but they
do not admit a formulation in terms of a local action principle nor is their elec-
tromagnetic structure described solely in terms of the gauge-invariant replace-
ment a,. -t a,. -eqA,. in their wave equ8>tions, i.e., by a local interaction. Those
charged systems that we kno,v are complex nuclei ,vhich are "composite struc-
tures" in current theory. An elementary particle {such as the proton, for ex-
ample, is believed to be) while exhibiting a complex "Io\v-frequency" structure
.:presumably preserves its kinematic properties for arbitrarily high-frequency
perturbations which extract the "bare" particles or "field"; needless to say
this is the criterion for distinguishing fundamental fields furnished by lor,al
relativistic quantum field theory. The results of the present investigation sugge.:,{t.
that any charged particle of spin ~2 should be a composite structure ill the sense
that for arbitrarily high frequency measurements no charged field ,vith the
kinematic structure of spin ~2 will survive. The final ans,ver to the question of
whether local fields describe "elementary" particles must, of course, be foUlld
in nature.
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APPENDIX. THE EQUIVALENCE OF THE MULTISPINOR AND VECTOR
SPINOR FORMULATIONS

The basic field quantity 1/1" used in the vector spinor formulation carries an
explicit vector index and can be covariantly decomposed into two parts

1/1" = ( 1/1" + 74'Y"'Y'1/I') -7'4'Y"'Y,1/I' = Ip" -7'4'Y"Ip,

,vhich correspond to the representations :D(I, 7~) + :D(7~, 1) and :D(71J:, 0) +
:D(O, 7'2), respectively. The most general Lagrangian matrices are, respectively,

(A}J),,~ = {3'Y"g,,~ + JV13('Y,,~~" + 'Y~~,,") + K13'Y,,'Y"'Y~ ,

B,,~ = (:Jg,,~ + T(:J'Y,,'Y~

where the W, K, T terms correspond to the lA), K, (J terms of the m':lltispinor
Lagrangian matrices. To see the correspondence more explicitly consider the
representation of 1!>" by a multispinor :

1p'Y" = U L p abc(13'Y")ab~C'YXabc ,

'V here uL p is the symmetrising operator. The inverse transformation is given

by

Xabc = %.~. L Pabc(fJ71')ab8c'Y'P'YI'.

To ,vork out the complete set of correspondence relations, we rewrite the

vector spinor Lagrangian matrices in terms of 'PI' and 1/1 to obtain :

1,lI1'{fJ7aql'. + WfJ(71'b'.a + 7.b'l'a) + KfJ71'7a7,,!I,lI. = 'Pl'fJ7agl'v'f'.

+ 'P"[TV8I'a +fJ7afJ71']'P + 'P[Wb'.a + ~7.7a]'P. + (K + ~W -7'8 )'PfJ7alp.

If one makes use of the correspondence between tranceless vector spinors and

totally symmetric multispinors, the identification with the multispinor La-

grangian is immediate.
We notice that there is a one parameter family of transformations on both

the fields and Lagrangian matrices simultaneously which leaves the physical

content of the theory completely unaltered. In the x, 'P( or 'PI', 'P ) forms, this is,

simplya scale transformation of 1/1 relative to x('PI') and a compensating change,

in the A ", B. The parts involving 1/1 once ( or twice) get multiplied by the re-;

ciprocal factor once ( or t,vice) .In the usual vector spinor form the significance:

is more obscure. (see ( 4.2) ) Since the transformation is purely geometrical,

the presence of interactions does not interfer with the transformation group.\
In the construction of interactions, the coupling matrices, I, must be chosen(
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so as to preserve the existence of secondary constraints, that is, they must satisfy

the equality

PoIPo = 0.

This is true, in particular, of gauge invariant electromagnetic interactions.
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