
The formulation of field theories by means of Wightman functions is studied. It is shown that, given
two field theories that satisfy all the axioms, one can construct a family of Wightman fields with the same
properties by a process of superposition of Wightman functions. The condition of unitarity is formulated
without reference to asymptotic conditions, and it is proved that the Wightman fields constructed by the
above superposition process (starting with "unitary" fields) fail to preserve unitarity, and a fortiori, the
standard asymptotic condition.

I. INTRODUCTION

I N the search for a dynamical scheme for describing
elementary particle phenomena consistent with

relativistic invariance and quantum mechanical prin-
ciples, the theory of quantized fields has been favored
with more study and has provided more insight than
any other scheme. The use of manifestly covariant local
Lagrangians as a starting point and the use of perturba-
tion expansions lead to questionable mathematical
operations with infinite quantities. In view of this,
during the last few years the study of general field
theories without starting with any specific Lagrangian
has received much attention.l The more fundamental
part of such a program concerns the study of an
abstract axiom system more or less suggested by earlier
Lagrangian theories.. In such a study it is worthwhile
to know if the 'axioms are independent and whether-
they are compatible; while the axioms are "related" to
general physical requirements their truth is neither
"self-evident" nor can one trust intuitive "physical"
justifications for the compatibility of these axioms.

Among the set of axioms usually taken as character-
izing quantized fields, these comments apply partic-
ularly to the so-called "asymptotic condition"2 which
enables one to relate the field operators to particle
scattering amplitudes. The somewhat provisional nature
of this axiom has been noted before; and perhaps not
unconnected with this is the fact that the other "field
axioms" have been the subject of a structure analysis
by Wightman.3 Making use of the tools developed in
this brilliant study we show in this paper that the
"asymptotic condition" is an independent axiom and
that one can construct systems satisfying all other
axioms but not this axiom provided that at least one
quantum field theory yielding a nontrivial scattering
matrix exists. In the course of this study we have been

able to construct several examples of fields with a
trivial scattering matrix.

In Sec. 2 we review Wightman's theory and construct
certain elementary families of Wightman fields using
the technique of vacuum expectation values. Section 3
discusses the weak axiom of asymptotic particle
interpretation and the normalization of the field. The
main result of the present paper is to show that almost
all members of the families of fields constructed in
Sec. 2 do not satisfy the (weak) axiom of asymptotic
particle interpretation; this result is stated and proved
in Sec. 4. Certain related comments are made in the
concluding section.

2. FAMILIES OF WIGHTMAN FIELDS

According to Wightman,3 a quantum field theory is
defined in terms of a Hilbert space JC and a set of
hermitian linear operators (more specifically, operator-
valued distributions) rp(x) labeled by a four-vector
x provided the following conditions are satisfied :

(I) Manifest Lorentz invariance, There must exist
unitary operators U(a,A) such that

rp(Ax+a)= U(a,A)rp(x)U-l(a,A)

for every proper orthochronous inhomogeneous Lorentz
transformation.

(II) Absence of negative energy states, The spectrum
of the Hamiltonian operator must be nonnegative, the
Hamiltonian being defined as the hermitian generator
of time translations.

(III) Local commutativity, The commutator of
two field operators at space-like points must vanish,

[rp(x),rP(y)J=o for (x-y)2<0,

(IV) The existence of the "vacuum" state, There
exists a unique state 10) invariant under all U(a,A),

We now form the vacuum expectation values of
products of n field operators labeled by the points

Xl,X2,"',Xn:
W<n)(Xl,X2,' , ',Xn)=W<n)({X})

=(o\rP(xJ"'rP(xn)lo), (1)

It can then be shown that, as a consequence of the
conditions imposed on the Hilbert space JC and the

".,

* Supported by the U. S. Atomic Energy Commission.
1 See, for example, the Proceedings of the "Colloque sur les

Problemes Math6matiques de la Th6orie Quantique des Champs"
(Lille, 1957) ; see also, "Problemi Matematici della Teoria
Quantistica delle Particelle e dei Campi" Suppl. Nuovo cimento
14 (1959) and references given there.

2 R. Haag: Dan. Mat. Fys. Medd. 29, No.1 (1955) ; H. Leh-
mann, K. Symanzik, and W. Zimmerman, Nuovo cimento 1,
205 (1955) ; 0. W. Greenberg, Ph.D. thesis, Princeton University
1956 (unpublished).

3 A. S. Wightman, Phys. Rev. 101, 860 (1956).



function W("i({Z}) analytic for Im{z} in the backward
light cone (absence of negative energies).

(iii) W<")({x})=W<")({x'}), where {x'} is any per-
mutation of the n variables {x}, provided the permuted
variables have space-like separations (local com-

mutativity).

(iv)

~.f Y.),Xr) W<r+t) (XI, ...,Xr,Yl,

~-- " ~.. ..~.u" u"
Theorem I; however, out of this infinite set, a spec
choice can be made by stating a normalization conditi
We shall state such a condition in the next secti
Theorem II allows us to construct an infinite set
Wightman fields (normalized, if so required) from t
(or more) distinct Wightman fields. Let us call the
of all Wightman fields W(n) ({x} ) generated
W1(n)({X}) and W2(n)({X}) the "family"; every po
in this family is labeled by a parameter A. We h,
remarked above that while O~A~ 1 is allowed in
cases, values of A outside this interval are not necessal
forbidden. It is then interesting to state the follow
theorem regarding the boundedness of the allo\1
values of A :

Theorem III (semibounded families). There exj
either a lower limit A1 or an upper limit A2 (or bo
such that for either A<A1 or A2<A (or both) I
combinations

V(n) ({x})=AW l(n) ({X})+ (l-A)W 2(n)({X})

cannot be a set of Wightman functions.
To prove the existence of such limits, we use 1

positive definiteness condition showing that these ;
violated for sufficiently large negative or positive vah
of A. Consider in particular W1(2)({X}), which is nc
negative according to (2). It cannoibe everywhere Zl
without making the field operator <P1(X) trivial. Cho~
any suitable testing £Unctionf(y) such that

and let

Then.

which becomes negative A < -alll- a lor for all a-
>A according as a is less than or greater than unil
Hence, the statement made in the theorem is proved

This demonstration however does not guaranI
that provided A1 <A <A2 the set V<n) ({X} ) are Wightm
functions since the positive definiteness condition
its complete form may still be violated; it may even
violated for other testing functions using W<2) ( { :t
only. However, from Theorem II we know that thE
exists the nontrivial family O~A~ 1 at least. In geneJ
the family is, of course, larger.

Xf.(yl,. ..,y.)d4Xl. ..d4X,d4yl. ..d4y.~O, (2)

where fr are suitable arbitrary functions (positive
definite metric). Wightman has also s~own3 that these
conditions are sufficient, that is, given a set of functions
JJl(n)({X}) satisfying these conditions, one can construct
a theory of a (neutral scalar) field satisfying the four
conditions stated at the beginning of this section which
has these functions for its vacuum expectation values.

Before the field theory so defined can be used to
describe a model of relativistic quantum theory of
particles, one must introduce some particle concepts.
The structure satisfying only the conditions introduced
in this section is a more general system; we shall refer
to this structure as a "Wightman field."

We now state two obvious properties of a Wightman
field in terms of its Wightman functions in the form of
two theorems.

Theorem I (scale change). If W(n)({x}) are a set of
Wightman functions, the set of functions knW(n) ({x} )
defines a Wightman field for every real number k.

This statement is immediately verified by noting
that if .p(x) is the Wightman field which corresponds to
W(n)({x}), then k.p(x) corresponds to knW(n)({x}).

Theorem II (convexity). If W1(n)({X}) and W2(n)({X})
are two sets of Wightman functions, the convex set

W(n)({x})=AW l(n)({X})+ (I-A)W 2(n)({X} ) (3)

defines a Wightman field provided the real number A
lies between O and 1.

The theorem is proved by noting that the functions
W(n)({X}) satisfy all the conditions imposed on Wight-
man functions: Lorentz invariance, analyticity in the
future tube, permutation symmetry for space-like
separated arguments, and finally the condition specified
by Eq. (2). Hence they define a Wightman field. Note
that, in this case, it is not easy to construct the field
operator in a simple manner but these functions satisfy
all the conditions imposed on Wightman functions ;
hence they define a Wightman field. If A is real but not



utlcles WI

= q.2= p.2)

PI, .., , pr nom a state contammg s
four-momenta qI, .." q. (with PI2=

given by the expression

S(PI,...,Pr;qI,'..,q.)

= f d4Xl ...d4X,d4yl d4'Y8

XA(Pl,XJ .A(PT,xT)A( -ql, yJ

x(OI T[<t>(xJ,. .

..A(-q.,y.)

,4>(Y.)JIO),
where

-i

A (p,x) =-eip,,(0,,2- }L2)

(271")4

3. ASYMPTOTIC PARTICLE INTERPRETATION
AND THE SCATTERING MATRIX

If this field theory is to become a theory of interacting
,articles, one must introduce particle variables into the
heory and identify at least some subspace of the
Iilbert space .1C as being associated with the particle
tates. Such a program4 has so far not been carried out
xcept for free fields. There is however another type of
,article interpretation which is less ambitious in the
~nse that certain linear combinations of vacuum
xpectation values of the fields are identified with a
:attering amplitude for "asymptotically free" par-
cles.5 Since there are certain properties to be satisfied
y the scattering amplitude this identification in turn
nposes some restrictions on the W ightman fields. How-
'ler the scattering amplitudes themselves provide only
[1 incomplete characterization of the field; and it
ppears that without the use of sufficiently strong
iditional postulates, the scattering amplitudes do not
etermine the Wight~an field. In support of this, it

known that one can construct several distinct
{ightman fields with a trivial Msociated scattering
Inplitude.6
It is conventiona12 to state the requirement of an

;ymptotic particle interpretation in terms of an
)propriately stated "asymptotic condition" and then
I "derive" the scattering amplitude in terms of certain
Ilear combinations of vacuum expectation values.
re shall follow the alternative method of stating the
Innection between the scattering amplitude and the
lCuum expectation values as the additional axiom.
his apparently arbitrary procedure has certain
Ivantages: first of all, unlike the other axioms of
lantum field theory, the asymptotic condition has so
r been stated only in unsatisfactory forms and their
ausibility is not immediately obvious. The best
~fense seems to be that it leads to a covariant expres-
)n for the scattering amplitude; but the expression
!elf could be obtained by other means, say for example,
r a formal summation of the perturbation series.7
:condly the question of completeness of the particle
attering states which is generally a prerequisite to
e axiomatization of the asymptotic condition seems
o strong; it is conceivable that the field Hilbert

and ,u is a "mass" parameter, Hence, the T product
vacuum expectation value is defined in terms of the
Wightman functions by the equations

(01 T{cf>(xJ," " ",cf>(x,,)} \0).=W(")(Xl," , .x,,) (Sa)

for Xlo>X20> ...>x"o,

(OiT{cf>(xJ,..",cf>(x,,)}IO)
=(oIT{cf>(x(),...,cf>(x,,')}lo), (Sb)

h I I " fwere Xi , ..., x" are any permutatIons o Xl, .." , x",

(Asymptotic particle interpretation.)
At this point, we must restrict our further discussion

to Wightman fields for which the T -product vacuum
expectation values exist. Given any Wightman field
we can now calculate the particle scattering matrix
in terms of this identification; but there is no guarantee
that the scattering matrix so defined satisfies the
conditions imposed on a scattering matrix, in particular
unitarity. It is considered further necessary that the
one-particle states are "steady" so that the S-matrix
elements connecting one-particle states to any other
state vanish identically (and that the two-particle
scattering is elastic below the three-particle threshold).
This condition can be used to normalize the field
operator;

f d4XA(p,x) f d4yA(-q, y)(01 T{cP(x),cp(y)} 10)

= (21r)4c5(p-q)c5(p2_IJ.2) (6)

with p2=q2-+IJ.2. It then follows that if W<")({x})
denotes the Wightman functions for this normalized
field of mass IJ. then knW<") ({x} ) defines a field which is
not normalized except for the special case k= =1=1. The

I A. S. Wightman and S. S. Schweber, Phys. Rev. 98, 812 (1955).
5 ~s point of view is somewhat more general than the classi-

~tlon of particle interpretations discussed by Wightman and
uweber (reference 4) .
: H. I. Borchers, Nuovo cimento 15, 784 (1960).
See, for example, Y. Nambu, Phys. Rev. 98,803 (1955).

8 This choice is very closely related to the work of K. NlShijima,

Phys. Rev. 119,485 (1960).



introduced here is weaker than the usual asymptotic
condition in the sense that we do not assume either the
completeness of the many particle states nor the
existence of asymptotic fields. :But if the asymptotic
condition is postulated as an axiom of the theory in
addition to the axioms for a Wightman field, we can
derive the expression for the particle scattering matrix
yielding the so-called reduction formulas.9 Thus the
axiom of asymptotic particle interpretation for a
Wightman field yields a more general system than the
Wightman field with the stronger axiom of asymptotic
condition. Needless to say everything we have proved
in the following sections apply a fortiori to fields
satisfying the usual system of axioms including the
asymptotic condition. We now proceed to show that
Wightman fields in general do not have an asymptotic

particle interpretation.

{All+ (1-A)/2}{All++ (1-A)/2+}
=A/lh++ (1-A)/2/2+,

which may be written

X(l- X) i: f d4klb'(kI2_jJ,2)8(klO)
n-O

X()(k"O) g(Pl, ..

Xg*(ql,

,p,. ; k1, 0 ..,k,,)

..o q ok 1 o.. k) - O., , , " -,

with

4. WIGHTMAN FIELDS WITHOUT ASYMPTOTIC
PARTICLE INTERPRETATION

In terms of the scattering matrix S one may define
the scattering amplitude! in the standard manner ;
and then note that the scattering amplitude so defined
is linearly related to the Wightman functions. The
unitarity relation imposed on !(Pl, ...,pr ; ql, ...,q.) is

,pr),q.)- f*(ql,!(Pl, ,q.; PI,,pri ql,

g=fl- h. (I

If we now specialize to the case of elastic scattering,
integrand is nonnegative and the vanishing of
integral implies that either g=O identically or A(l-
=0. In the first case the two Wightman fields m
have the same scattering matrix and all the Wightn
fields in the allowed family Al ~ A ~ A2 yield the SG
scattering matrix; the second case is trivial. We n
now prove the following theorem.

Theorem IV (equivalent scaUering matrices).
Wightman field defined in terms of the Wightn
functions

W(n)=LA"W,,(n), LA,,=l, A,,~O,

the functions W ,,(n) admitting asymptotic part
interpretations with the same "mass," has an asyI
totic particle interpretation if and only if all the Wi~
man fields have the same scattering matrix.

This more general statement is proved essentially
same way as used above; one derives in place of

the equation
X8(k"O)f(Pl,

,kn) (7)

L AaA~(f,,+- f~+)(f,,- f~)=o,

,,>~
or symbolically,

(7')(f- f+)=iff+,
from which it follows that fa= fp unless XIX or
vanishes provided all the XIX are nonnegative. r-;
that, unlike the case of two fields only, here the COJ

tion Xa~O cannot be simply relaxed; in general,
grounds of continuity, one expects the domain
values of XIX (with sum unity) for which the theo
holds is somewhat larger in view of the demonstral
above regarding only two fields.

In the summation, most of the terms contribute nothing
since energy and momentum must be conserved if the
scattering amplitude is not to vanish. Let !1 and !2 be
the scattering amplitudes for two Wightman fields
with asymptotic particle interpretation defined by their
Wightman functions W1(n) and TV2(n). We shall further
specialize than to correspond to the same "mass." If
we now define afield in terms of the Wightman functions

W(n)=AW1(n)+(1-A)W2(n) s. DISCUSSION
The results of the preceding section imply that

axiom of asymptotic particle interpretation is indepf
ent of the other axioms of field theory and is
derivable from them; a conclusion already indiCf
by the existence of several distinct fields with the ~
S matrix. We have actually used only a weaker ax

in view of the linear relation between the Wightman
function and the scattering amplitude, it follows that
the scattering amplitude f for this Wightman field

9 H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo
,,;m..ntn 1. ?0, (10.,_,)

,pr;kl,.",k,,)

X!*(ql,.",q.;k1,



also nave more generally

W(n) = La hakanWa(n), La ha= 1, ha?;: 0, (9)

which provide Wightman fields, the functions Wa(n)
corresponding to known theories; say either free fields
with arbitrary masses, or the Wick polynomials of free
fields or terminating Haag expansions.6 By a limiting
procedure in forming such linear combinations one can
produce any two-point function

(10)<0 I lJ>(x)lJ>(y)10)= f dp(m2)t:.<1}(m; x-y)

(where d(l)(m; x-y) is the two-point Wightman
£unction £or a £ree field 0£ mass m) by taking £or the
Wightman £unctions

w<n>({x})=! dp(m2)W<n>(m; {X}), (11)

(O\T{<p(xJ,. ..,If>(x,,)}\0)

if the Wightman functions for momenta on the mass
hell; without additional restrictions this is not sufficient
() determine the field in any sense. Yet here we see
bat the unitarity requirement on the particle scattering
latrix excludes most Wightman fields from having an

symptotic particle interpretation.
Perhaps the weakest point of the present investigation

i that it has not provided any example of a field theory
~th asymptotic particle interpretation with a nontrivial
:attering matrix; rather it asserts that if there exists at
ast one such theory there exists an infinity of Wight-
Ian fields not having an asymptotic particle interpreta-
on belonging to the family generated by this one field
)gether with the free field of the same mass.
We have worked here within the framework of the

mventional axiomatization of quantum field theory .
: the purpose of the field theory is only to provide a

llantum theory of interacting particles invariant under
le complex Lorentz grQup, the conventional axiomat-
ation is too rigid in that it imposes "physical require-
lents" on the field. This is most easily seen in the case
.the axiom of positive definiteness: in a theory where
le physical particle states do not form a complete set
: states in the generalized Hilbert space in which the

:Id operators are defined, it is sufficient if the particle
ates constitute a subspace with positive definite
etric. That these considerations are not devoid of
lysical interest is seen from the example of the
lantized Maxwell field. One of the present authors has
scussedlo examples of quantum field theories for-
ulated in terms of a generalized Hilbert space with an
definite metric where again the physical particle
ates are not complete in the generalized space but
Institute only a subspace with positive definite metric.
l such theories the physical interpretation requires an

where W<n)(m; {x}) are the Wightman functions for a
free field of mass m, and p(m2) is a nonnegative measure.
But all these fields have a trivial scattering matrix.

Finally the present study illustrates the validity of
Wightman's statement3 that the consequences of
positive definiteness are distinct from the consequences
of unitarity. The Wightman fields constructed above
satisfy positive definiteness but do not yield unitary
scattering matrices, while certain indefinite metric
theories (including quantum electrodynamics)~O provide
examples of theories in which the field operators are
defined in a generalized Hilbert space but the scattering
matrices are unitary .
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