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Summary. — An explicit reduction scheme to dispaly the irreducible parts
of a fourth-rank cartesian tensor is presented. Such a reduction scheme
is of interest in connection with crystal physics, hydrodynamie turbu-
lence, ete. As an immediate application, the stochastic dynamics of a
spin-one system is briefly “discussed. '

1.  Introduetion.

-Space has three dimensions; consequently invariance considerations for
physical systems include a systematic approach to the properties of the three-
dimensional rotation group and its representations. But since most of this
work was undertaken within the framework of quantum mechanics the complex
spherical representation of the tensors is the one employed in these studies;
in connection with some physical problems (mainly in hydrodynamic turbu-
lence and crystal physics) it is more convenient to have a scheme employing
Cartesian tensors. In this paper we develop a Cartesian scheme for the re-
duction of a fourth-rank tensor (!) which is of particular interest in connection
with the stochastic dynamics of a spin-one system.

The reduction scheme we employ-is the natural generalization (2) of the famil-

(*) The general theory of such reductions ‘has been developed by A. Pais: Ann.
Phys., 9, 548 (1960); and the explicit . reduction cartied out here is consistent with
this general theory. See also, G. GOLDHABER S GOLDHABER, W. LEE and A. Pais:
Phys. Rev., 120, 300 (1960).

(2) The symmetry characterization of the various 1rreduclble parts of a tensor of
rank 7 is treated in a forth coming paper by A. Pars. We are indebted to Professor Pars
for a communication on this point. '
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2 REDUCTION OF CARTESIAN TENSORS AND ITS APPLICATION RBTC. [1271)

iar reduction of a second-rank Cartesian tensor into its trace, the antisym-
metric part and the symmetric traceless part which transform respectively
a8 the 1-dimensional, 3-dimensional and 5-dimensional irreducible represen-
tations of the rotation group. We refer to this last property by saying that
these tensors have spin 0, spin 1 and spin 2, respeectively. When one goes
beyond the second-rank tensors the reduction is not so straightforward and the
various invariant parts are not labelled by the « spin » label alone. We have
confined our attention to fourth-rank tensors here; for an arbitrary tensor
Tij, of the fourth rank we can define two «intermediate spins» 4, u=0,1, 2
which are the « spins » associated with the first pair of indices and the second
pair of indices, respectively. These intermediate spins now add vectorially to
give the spin of the tensor with the familiar relation |1—u|<v<|[A4u].
This scheme is illustrated in Fig. 1 and is the one employed throughout the
sequel and we shall refer to this as the (4, u; ») part. Each « part » is invariant
and constitutes an irreducible tensor. :

Of course one might choose to discuss the reduction in terms of some other
scheme. Since the part with intermediate spin 1 has the eigenvalue (—1)*
under the interchange i < j etc., the only nontrivial one is the second scheme
illustrated in Fig. 1. The part with spin labels A/, u', »' according to the second

Y,

Fig. 1. Two schemes of reduction of the fourth rank tensor 7y;,.

scheme is a linear combination of parts with spin labels 4, u, » according to
the first scheme with the restriction v =9’ and the coefficients of linear com-
bination (with appropriate normalization!) are Racah coefficients and are thus
« known ». ' s ‘

The parts (4, u, ») with the restriétionp =1 are in one-to-one correspond-
ence with the invariant parts of the third-rank tensor 7,; in a scheme of
reduction where i is the intermediate spin corresponding to the indices 4, j.
So no separate treatment of the third-rank tensor is necessary.

In Section 2 we carry out the reduction of an arbitrary fourth-rank tensor
into the 19 irreducible parts (4, u#; #). The next section deals with the ap-
plication to the dynamics of spin-one systems. Section 3 deals with the
axially symmetric case. In the last section some related points are discussed.
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[1272] R. K. BANSAL and E. C. G. SUDARSHAN 3

2. — Reduction of an arbitrary fourth-rank tensor.

Let us consider an arbitrary second-rank tensor T,;. Then the irreducible
parts of this tensor are as follows:

TABLE I
Reduction of T
Part Spin
3T 05 0
HTy—Ty) L
3Ty + Ty 8Twd 2

In the sequel we shall often disregard absolute normalizations; with this
understanding we can now write down the invariant (but, in general, reducible)
parts of the fourth-rank tensor T',;, with intermediate spins A, u as follows:

Reduction of Ty,

Intermediate

Part spins 4, u

Tmm‘nnaijakl

(Tijnn_' T! nﬁ) 6kl

(Tmmkl"—, mmlk) aii “

(Tfjnn + Tj_‘vm'_ §‘ 6ii Tmmnp) .akl

(Tir— Ty + Troe— Tojm)

(Tmmkl + Tmmlk_ §' akl Tmmnn) 61‘:’

(Tﬁkl + Tj P A % 6‘1 Tmmkt— Ti.‘”k_'"Tﬁlk - % d.’lemlk)

(Tisir+ Tije— 300 Tignn— Tiea— Trove— & Or1Tjinn)

(TUkl+ T‘:ﬂk— %TUVHI 6kl+ Tj kl+ T}ilk' . %Tjiml 6kl) -
- ‘!‘ éia‘(Tmﬁkl + Tmmvc,—' %Tmmnn 6kl) 2.2

-

SO ENO O
O = O OO

To complete the reduction it is necessary to determine the final spin » with
|A—p|<v<|A4p|. Consequently there are 19 such irreducible tensors; three
irreducible pa.rts (0,0; 0), (1,1;0), (2,2;0), with spin 0; six parts (1, 0; 1),
0,1; 1), 1,151), (2,15 1&) (1,2; 1), (2,2; 1) with spin 1; six parts (2, 0; 2),
(1,1;2), (0,2;2), (2,1;2), (1,2;2), (2, 2; 2) with spin 2; three parts (2, 1; 3),
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4 REDUCTION OF CARTESIAN TENSORS AND ITS APPLICATION ETC [1273]

(1, 2 3), (2,25 3) with spin 3; and one part (2, 2; 4) with spin 4. One easily
verifies that the total number of independent components is 3 X146 X3+
4+6x54+3xXT7+1x9=_81=23*as it should be for arbitrary fourth-rank tensor.
These tensors. labelled T, are written down below:

Complete reduction of the tensor T in (2, 4;») notation)

Spin zero
(1 Timnn 0450 (0, 0; 0)
2) (Tnmn ~ Trnnm)(0a2050 — 8182 {1, 1;0)
3)  (Tonmn + Tonom — 3 Toamnn)(808; 00160 §0:501) (2,2;0)
Spin one
(4)  TrrnnErrmEmiiOn 1,0;1)
(8)  Tanrr &rrmEmiiOus (0,1;1)
(6)  [Tersw(ErrmEssn— ErrnEosm) Emis En] (1:1: 1)
(7 [Tires&rrasnt — Oirtimi + 0u18ixa)] +
A+ [ TirrsErrs twit + Oir€int + Os1€akn)] (2,1;1)
(8)  [Trsrtrrsise — T riontrrs(Oue€isn + S1sim + SusEan)] + o
A Trpsnrrsist — Trronors (B1x€isn == OrsEont + Buican)] ,2;1)
©®)  Tomtronlenadi- ennba  Enadie  Emndu)] 2,23 1)
Spin two
(Tisan+ Tsinn— 5 0¢5 Lonmnn) Ok 2,0;2)
11)  (Tanret Tonte — § 051 Tmnn) 81 (0,2; 2)
[(Tinin ~+ Tenin—F 0 Tonnna) 050 — (Tinen  Tymsn % Oit Tranmn) 84
(e Trin— 285t Trmmn) S5 —
— (Tyntn~+ Tonsn — 365 Toumn) O] (1,1; 2)
[(Tonin + Tinin— 5 0it Tronmn) 01+ (Tinin - Tyjp— % 852 Trnwmn) 012]
—[(Tinin+ Tinnin— %0t Trnmn) O3 T Tinsn + Trnsn—
— %651 Tonnmn) O] 2,1;2)
(19)  [(Tonsat Tnin— §0 Tonn) 851+ (Linta + Tinin—
360 T O] — [(Tontn + Trntn— 4053 Tmama)
+ (Linin+ Tinin— %85 Trunmn) 0] (1,2;2)
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{(Tomen + Tinin— % 8t Tonamn) S5 A (T + Tensn—
— 30 Tnmn) 051 — & 045 Tintn -+ Thnin— %0 Tnma)] +
4 [(Timto & Tonin— %851 Trsnm) 8+ (Lintn ~+ Tonsn—
— %8, L) O — 845 (Tintn & Toutn — % S Trnnmn) ] —
1464 (Tonsm+ Tintn— 360y Tonnn)]} 2,25 2)

2]

Spin three

(16) [%(Tihr' + Tiprs + -Tjirr' = Tirri + ’Trr'ij)arr'msmkl_
— %04(Tonrr & Tarrn+ Trrinn) ErrmEmes—
- ‘}, nire T Tmr P I TrpjntTop nf)srr n€ik1—
— MToser + Topri + Tiner + Lirrn+ Trroni+ Torin) Slrr'neikl] (2,1; 3)

a7 [%( Tiarr + Trrrt + Tiire + Tiere+ Lok + Trrnt) ErrmEmis —
— %61:1 (Lunrr =+ Torrn = Torinn) ErrimEmis —
— 3 (Tnier + Toeri 4+ Tiner + Tyt Trpni =+ Toriin) Errn€in
- %‘(.Tnkrr + Tnrer + Tioner + Tioren+ + Trern =+ T rnr) €renis] (1,25 3)

(18) [%(Tilcn" + Tipoe + Trior + Tirrre + Lok + Trrvin) ErrmEmir +
+ %(Tjkrr' + Toper+ -Tklrr' + Tiers + Tovie + Lorns) €rrmEmin+
_ + %(an + T+ Tlmr + Tyei+ ‘T"'” +;Trr'it) Err'mEmat
+ %(T:ilrr' 4 Tirrs + Trser + Lo + Frors + Lorist) errmEmir —
- %(Trﬂ'm + Tppern + Tnnrf')(smﬂaik + &miz O +
+ emiOar + Emin051) Emer] (2,2;3)
‘ Spin four -
BU( ot + oo+ Lo+ Ty + T+ Tws) +
A+ (Toes + Trone + T+ Tori + Lo+ Ty +
_ + (Tress + Trsaa + Tkm 4+ Teesi 4 Tross + Tkm) +
+ (Lo + Tises + Turis + Tirsa + kaik'i- Tia)] —
-+ — 80u[(Tpnss + Tonie + Torns + Torin + Tnlﬂk + Town) +
+ Tkrml + Tklrm + Tknln + Tnmn + szm+ Tlnnk)] -
: — £ 0u[(Tann + Tonis + Toini + Tasin + Latas + Tarin) +
R + Tinni+ Tinin+ Tiinn+ Tinns + Tinin + Tiinn)] —
— & 0u[(Tons + Tonks + Tnsne + Lnsun + Torsn + Tonns) +

3683



6 REDUCTION OF CARTESIAN TENSORS AND ITS APPLICATION. ETC. [1275]

+ Thmk + Tj”k” + T;k"" +.kam1 + Tkm‘n + Tkinn] __u .
— %0,u[ Trnss + symmetrize in the four indices to get 12 terms] —
— £0,i[Twns + symmetrize in the four indices to get 12 terms] —

~— 3 0u[ Tons; + symmetrize in the four indices to get 12 terms] —~
+ %%[Tmmmt 6i16kl + Tnmnm 6ik 6!1 + Tmnnmaz‘lajk]} .

In the process of reduction we have systema;tically employed thé well-known
properties of the Levi-Civita symbol and in particular the identity

Sapylapy O 6319' 51 6 ﬂy 7"‘ +
+ aav'aﬂa' O Ouwlpylyp 8y 0ppdya Oup0pudy,

One particular point deserves mention! The scheme of reduction employed
here exhibits the various parts with spin v, 0<v<4 as fourth-rank tensors;
of course we could make a one-to-one correspondence of one of these parts
(A, u;v) with a tensor of rank » obtained from T7';; by linear operations.
But for the applications we have in mind it is more convenient to leave them
in their present form. It is also worth noting that in this terminology there
are no isotropic tensors with spin different from zero; of course there are iso-
tropic tensors of all ranks (except 1) since there are spin 0 parts in a general
tensor of any rank except one.

To illustrate the method, consider the part (1,1;1). Since (i) and (k)
indices are antisymmetrized, they can be contracted using the Levi-Civita
symbols e,,,, &, leading to a second-rank tensor {,, which is now.to be
antisymmetrized giving tup—t, With spin v=1. We can now restore the in-
dices using the Levi-Civita symbols ¢,,, &, thus finally obtaining

(L13) __
T e T 711 Cary Eprny (sa“ Eory  Epij )

which is the result given above. By playing with the Levi-Civita and Krone-
cker symbols the irreducible tensors (A, w3 v) can also be written in appar-
ently different looking forms, hlch are same within a multiplying constant
For example,

Ty ywv €aer Eawv (Bass a1 — EpusEana)
can be written in the form
T Tiwr  Ton+ T Tavss+ Torse+ Tss -+ Tonss Lok,
by making use of the identity
Earvbuus (0400 0,0y
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[1276] R. K. BANSAL and E. C. G. SUDARSHAN

3. — Application to stochastic dynamics.

A spin-one system in quantum mechanics is a three-level system whose
states transform as the components of a vector under rotations. Being a three-
level system the most general admissible state is a nonnegative Hermitian
3 x 3 matrix with unit trace; hence a general state is specified by 8 independent
real parameters lying in appropriate domains. The most general dynamical
law’ then consists in stati‘ng how these 8 parameters vary as a function of
time, with the restriction that the temporal changes do not lead these para-
meters outside the allowed domains.

Let us consider a general 3 x3 Hermitian matrix M and its parametri-

zatlon in terms of 3 real parameters r, p,, g, and three complex parameters
Py 917 Q-

P+ s
r+m @ V2 q:
p:l + ql P @
2 —
M vz ’ V2
¥ *
* O
B, et
q: V3 PoT G

Under an arbltrary unitary transformation M - UMU*=M we get a new
set of six parameters which are linear combinations of the old parameters.
But there are three invariants which may be written
A =3r
B=r" 4rgq,— (g + 0.0 + 0,4 + 23+ p.0}) 5
C=r rig+aa + 6 + 2+ p,0]) +
+ (P — PPy — G — 4 0) + 0:.6) + DB + 2,87 + P 0) +
+HGP+ 60— O+ 604 — LA+ G4+ G 668
which are the coefficients of the characteristic equation of the Hermitian
matrix M:
det!M AI A+A442 BA4+C 0O

If we now restrict M to be a density matrix ¢ then M must have unit trace
and be nonnegative. Consequently 4 =1 and the other two invariants must
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[1277]

lie within the domain bounded by the C-axis and the arcs OP, PQ defined

by the equations
27C=9B—2 F

21

3B

This domain is shown shaded in Fig. 2; note that while the densmy matrices
form a convex set since these unitary 1nvar1ants are not linear in the density

_\C

Fig. 2. — Allowed ' domains for the charac-
teristic parameters 4, B of the density ma-
trix of a 3-level system.

;
0 = 0
P

|1 1
L=\ Y A
1
0 750
1 0
J,={0 0
0 0

matrix parameters, the allowed
domain is not convex.

Following CARTAN, we observe
that the parametrization of the
matrix M is such that the ma-
trices depending on p, g, r trans-
form amongst themselves under
rotations as irreducible tensors
with 3, 5 and 1 independent com-
ponents respectively, provided the
angular momentum matrices are
chosen as the following standard
set:

—1

0 I 0
V2
. 0 -
V2 Ve’
i
0 — 0
V2
0
0
1 &

The stochastic dynamics of this system is completely specified by the
32x 3* stochastic matrix 4,,,.(!) given by the defining relation

0ro(t) =

Arr (1) 000 (0)

with summation over the repeated indices 7's’ being understood. The sto
chastic matrix satisfies the, following properties:

Asr sy —

‘A'rar's' yt yn Ty .’.U: >0

-Arr,r’.s' = 61"

3685
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{1278] R. K. BANSAL and E. C. G. SUDARSHAN 9

corresponding to hermiticity, positive definiteness and normalization of the
density matrices. '
The operation of summation, over repeated indices corresponds to con-
traction of tensors in view of the transformation properties of the quantities
p, ¢, r under rotations. Hence it follows that the irreducible parts (4, u; %)
in the reduction of the stochastic matrix considered as a fourth-rank tensor
A has the following interpretation: it furnishes the specific coefficient in
the contribution of the irreducible spin u part of the density matrix g.;(0) in
the expression for the irreducible spin A part of the density'matrix 0:s(2).
In particular the normalization condition A4,,,,=06,, yields imme-
diately ' '

Agualt; O, u; )] 0

If we know further that the dynamics possesses any symmetry property, it
would be reflected in the dependence of A.;[t, (4, u; )] on the index ». For
the isotropic case, for example we have ' '

Apalts (A, p; )] 0,

Even if the system is not isotropic, say for the relaxation of a spin system
in a cubic crystal lattice, the.crystal symmetry prevents the existence of any
spin 1 or spin 2 tensors invariantly associated with the lattices; consequently
the parts of the stochastic matrix with »=1,2 must vanish for such a re-
laxing system provided no external magnetic field is present. For more com-
plex crystal classes the discussion is not so straightforward.

4. — Systems with axial symmetry.

Excepting for the familiar case of isotropy, the simplest special case is
that of axial symmetry. It is of particular importance in the discussion of
the relaxatiop in a strong external magnetic field in an isotropie medium (or
one in which an axis of axial symmetry coincides with thedirection of the
magnetic field). We denote the unit vector in the distinguished direction by &.
Given such an axially symmetric system, any tensor of spin » can be expressed
as linear combinations with numerical coefficients of the (2v--1) spherical har-
monics Y™(£). Consequently apart from a multiplicative constant ‘a(4, u; »)
the irreducible parts T;.(4, u; v) are uniquely determined and may be written
down immediately. They are given below, where we have omitted the pos-
sible multiplieative constant; the most general axially symmetric fourti¥rank
tensor is an arbitrary linear combination of these tensors.
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Reduction of T;,(&)
Spin zero
Gis 0
(685 6,04)
(Buds  Oudp- i)

Spin one
€5p15 O
&by
e — Eia)
(Esemit Er8mi— §0:5 Embmnr)
(Eruis + E18rii — & Onibmemis) -
[émemax b + £mem,k Burt Entmir b Em &mit Oux}

Spin two
(§:€5— Y3015) O
(Exéi— Ya011) 0us
[(&:&— Ya 8ua) 05— (f;’;:k(— Y30504] —
— L= 9080 8,) — (6,61 900, 8]
[6:8005+ &16x0u] —[£:6105 -+ §:6.00]
[6:600, + &:8185] — [ 00+ &,6104)

{[(E«Ek—%aik) 65+ (fifk"‘%am 5;1—5‘51'1 (6161 — Y3 012) e+ .
—[(6:6:—3%64) 6jk+ (5151 1691)5¢k—"6u(5k§z 1/3151”)]
—[$0x:(8:8,— 3 041) ]}

Spin_three
[%fisjépaﬁkl - %6-‘151)\6”1 — %fa‘é‘m,“‘ %Eiai(cl]‘ '

[% Ee&ebntp— %akiyépepij — lEkslU — +&18045]
[(%Sigk—%aik)fmsmﬂ ‘5 Et %611)5”’&8'””70_'_
+ (%f;fk — 13‘6.%) Ememu+ ('g'fjtfz - %551)§m8mik]

[1279]

(0,0;0)
1,1; 0
(2,2;0)

(1,05 1)
(0,1; 1)
(1,1;51)
2,1; 1)
1,2;1)
2,2; 1)

2, 0; 2)
(0, 2; 2)
1,1; 2)

(2,1; 2)
(1,2;2)

2,2;2)

(2,15 3)

(1,23 3)

(2,2;3)
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Spin four

(19)  [$6:6,5E— HOububi+ 0uk )b+ 8ukib
+ 6:11051'51__'— 611§i£k+ 61{:!5{51‘) +
+ %5 (000 + 0 b+ 00u0:)] (2,25 4)
In its application to stochastic dynamics of axially symmetric spin-1 sys-
tems these universal forms imply certain geometrical connections with respect

to the changes in multipole polarizations p, ¢ as functions of time. These

connections are most early expressed in the following manner: Let o2, 0%
(2}

o;; be the spin 0, 1, 2 parts of the density matrix p,;,. These parts in turn
may be decomposed, in relation to the vector & as follows:

9:10)‘ —>0(0,0) = 9:3) 9, 1,

l/ e, 0) = &5 Qg)gk
ed1,1) = ¢;¢,

o)
Qy

02, ¢ = 955)5{55
Qg) —>10i2,1 = 9::)51— Q;cgz) §.6.¢,

@,-;(2, g = 7923)‘— Ql(c?fkngfgj .

Then the axially symmetric dynamics mixes only 0(0,0) =1 with itself,
(1, 0), ¢(2, 0) amongst themselves, g,(1,1) and g,(2,1) amongst themselves
and p,(2, 2) with itself.

5. — Concluding remarks.

The previous sections outline a method of reduction of arbitrary tensors
in their cartesian form. The same general method used here could be used
for higher-rank tensors also (2) but the task becomes rapidly complicated. Need-
less to say, in a physical problem like that of hydrodynamic turbulence where
the Cartesian form is very desirable, the decomposition is only the kinematics
of the problem and the interesting question is the transcription of the dynam-
ics, contained in the Navier-Stokes equations, in terms of these invariants.
The complexity of this aspect of the problem may be seen from the fact that
so far only the second-rank axisymmetric case has been completely studied;
for a comprehensive discussion of the decay of turbulence of at least a partial
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12 REDUCTION OF CARTESIAN TENSORS AND IT$ APPLICATION ETC. [1281]

study of higher-order correlations is necessary, The methods developed here
provide the initial steps in such a study; a more detailed discussion is beyond
the scope of this work, but will be presented elsewhere.

The restrictions imposed by crystal symmetry on the various irreducible
parts of the fourth-rank tensor have only been touched upon here, but this
aspect has to be examined in the detailed study of the relaxation mechanism
of dipole and quadrupole polarizations of spin-one ions at lattice sites. This
connection is however best studied with reference to the particular erystal
under investigation. \
~ The decomposition outlined here also suggests a new representation -of
crystal properties; one splits a tensor into its irreducible parts and each irre-
-ducible part is given a géometric representation. This last one is facilitated
by the fact that an irreducible part with spin » can be associated with a homo-
geneous form of degree v in three variables; interpretation of these variables
as homogeneous co-ordinates in a plane and a canonical choice of the homo-
geneous fom would give a plane curve associated with each irreducible part.
This program is currently being carried out by S. MORIN in relation to various
tabulated crystalline properties. :

The authors would like to express their appreciation to Professor R. S.
Knox for his interest in this work and for a critical reading of an earlier
version of the manusecript. ‘

RIASSUNTO (*

8i presenta uno schema di riduzione per rappresentare le parti irriducibili di un
tensore di quarto ordine. Tale schema di riduzione interessa in rapporto alla. fisica
dei cristalli, turbolenza idrodinamica, ecc. Come applicazione immediata si discute bre-
vemente la dinamica stocastica di un sistema di spin’ uno.

(*) Traduzione a cura della Redazione.
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