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Summary. --An explicit reduction scheme to dispaly the irreducible parts
of a fourth-rank cartesian tensor is presented. Such a reduction scheme
is of interest in connection with crystal physics, hydrodynamiQ turbu-
lence, etc. As an immediate application, the stochastic dynamics of a
spin-one system is briefly. discussed.

1. Introduction.

Space has three dimensions; consequently invariance considerations for
physical systems include a systematic approach to the properties of the three-
dimensional rotation group and its representations. .But since most of this
work was undertaken within the framework of quantum mechanics the complex
spherical representation of the tensors is the one employed in these studies;
in connection with some physical problems !mainly in hydrodynamic turbu-
lence and crystal physics) it is more convenient to have a scheme employing
Cartesian tensors. In this paper we develop a Cartesian scheme for the re-
duction of a fourth-rank tensor !1) which is of particular interest in connection
with the stochastic dynamics of a spin-one system.

The reduction scheme we employ is the natural generalization ( 2) of the famil-

(l) The general theory of such reductions 'has been developed by A. PAIS : Ann.
Phys., 9, 548 (1960) ; and the explicit reductiou carried out here is consistent with
this general theory. See also, G.GOLDHABER S. GOLDHABER, W. LEE and A. PAIS:
Phys. Rev., 120, 300 (1960).

(2) The symmetry characterization of the various irreducibl!3 parts of a tensor of
rank 'n is treated in a forth coming paper by A.. P Alt' .We are indebted to Professor PAIS
for a communication on this point .
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2 [1271 JREDUCTION OF CARTESIAN TENSORS AND ITS APPLICATION ETC.

iar reduction of a second-rank Cartesian tensor ipto its trace, the antisym-
metric part and the symmetric traceless part which transform respectively
as the l-dimensional, 3-dimensional and 5-dimensional irreducible represen-
tations of the rotation group. We refer to this last property by saying that
these tensors have spin 0, spin 1 and spin 2, respectively. When one goes
beyond the second-rank tensors the reduction is not so straightforward and the
various invariant parts are not labelled by the « spin » label alone. We have
confined our attention to fourth-rank tensors here; for an arbitrary tensor
Ti;kZ of the fourth rank we can define two « intermediate spins » I., fl, = 0, 1, 2
which are the « spins » associated with the first pair of indices and the second
pair of indices, respectively. These intermediate spins now add vectorially to
give the spin of the tensor- with the familiar relation II. -fl, 1 <v< [1.+fl, I.
This scheme is illustrated in Fig. 1 and is the one employed throughout the
sequel and we shall refer to this as the (I., fl,; v) part. Each « part » is invariant
and constitutes an irreducible tensor .

Of course one might choose to discuss the reduction in terms of some other
scheme. Since the part with intermediate spin I. has the eigenvalue (-1)'-
under the interchange i +.'1:: j etc., the only nontrivial one is the second scheme
illustrated in Fig. 1. The part with spin labels I.', fl,', v' according to the second

scheme i~ a linear combination of parts with spin labels )., ft, v according to
the first scheme with the restriction v = vi and the coefficients of linear com-
bination {with appropriate normalization!) are Racah coefficients and are thus
« known ».

The parts {)., ft, v) with the restrictionft = 1 are in one-to-one correspond-
ence with the invariant parts of the third-rank tensor T iik in a scheme of
red1lction where). is the intermediate spin corresponding to the indices i, j.
So no separate treatment of the third-rank tensor is necessary.

In Section 2 we carry out the reduction of an arbitrary fourth-rank tensor
into the 19 irreducible parts {)., ft; v). The next section deals with the ap-
plication to the dynamics of spin-one systems. Section 3 deals with the
axially symmetric case. In the last section some related points are discussed.
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2. -Reduction of an arbitrary fourth-rank tensor.

Let us consider an arbitrary second -rank tensor T i; .Then the irreducible

parts of this tensor are as follows:

TABLE I

O

1

2

tTkk!5ii

!(Tii -Tij)

t(Tii + TJi iTkkt5

In the sequel we shall often disregard absolute normalizations; with this
ullderstanding we can now write down the invariant (but, in general, reducible)
parts of the fourth-rank tensor T iik! with intermediate spins A, ,u as follows:

TABLE II

~

Eeduction of TilkJ

Interm~diate

spins J., .u
Part

0,0

1,0

0, I

2,0

1,1

0,2

2,1
1 "

Tmm"..15ii15k,

(Tii",,- Ti"n)15kl

{Tmmkl-: Tmmlk)15ii

(Tii",,+ T"",-i15tiTmm",,)~k'

(Tiikl- Tiikl+ Tiilk- T,ilk)

(Tmmkl+ T...mlk-.f15kITm...",,) 15ii

(Tiikl+ Tikl- i15iiTmmkl-T;i'k~Tiilk

(T;ikl+ Tlilk-i15kIT;i""-Tikl-Tiilk-

(Tiikl+ Ttilk-iT;i",,15kl+ Tikl+ Tii,k-

-l15:,(Tmmk'+Tmmllt-- lTmm"..~kl)

-tlJiTmmZk)

t lJkITi:nn)
t :Z:iinn lJkJ -

2.2

To complete the reduction it is necessary to determine the final spin 11 with
1).-lil<11< I).+.u]. Consequently there are 19 such irreducible tensors; three

irreducible parts (0, 0,; 0), (1, 1; 0), (2,2; 0), with spin 0; six parts (1,0; 1),
(0,1; 1)., (1,1; 1), (2.'1; 1f, (1,2; 1), (2,2; 1) with spin 1; six parts (2) 0; 2),
(1,1;2), (0,2;2), (2,1; 2), (1,2; 2.},(2,2; 2) with spin 2; three parts (2,1; 3),

0
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(1,2; 3), (2, 2; 3) with spin 3; and one part (2, 2; 4) with spin 4. One ~~sily
v~rifi~s that the total numb~r of ind~p~nd~nt compon~nts is 3 XI +6 X3 +
+6 x5+3 x7+1 x9 = 81 = 34 as it should b~ for arbitrary fourth-rank tensor.

'rh~s~ tensors. lab~ll~d T.lkl'are writt~n downb~low:

Complete reduction of the tensor Tiik! in (A, f1,; v) notation)

Spin zero

{0, 0; 0)(1 Tmm ,jil,jj

(11. 1; 0)Tm1l1lm)(bikbi! -15i!bik)

,-iTmm1l1l)(bikbi

{Tm..m..

{Tm..m..

2)

(2,2; 0)biz bjk ibiibkJtTm"""(3)

Spin one

(1,0; 1)

(0 l' 1), ,

(1; 1: 1)

(4)

(5)

(6)

(7

Trr"",Brr'mBmi; bkl

T""rr'Brr'mBmk'bt;

[Trr'8"(Brr'mB"",- Brr'"B8"m)Bmt;B"kJ

[Ttri"'Brr',B;kt -T"rr',Brr,(bt;B"kl +

+ rT;rr,Brr'8Bikt -T"rr.,Brr',(bt;~ (2, I; I)

t5ikei..1 + t5,leik..)} +

"..101 + t5,ke,..I+ t5ile,kn)]

rr'...err. (t5lke,i..+ t5lff;,..k + t51,enik)l+

'1- Trr'...err'.(t5lke/f.. 4 + t5k,e"iJJ

{8)
(1.2; i>

(2, 2; 1)

-"~JBt,,1

BmJI "j~)]emik <5i!

[Trr',IErr.,Eiik- T

+ Trr',kErr,Eij

T """,Brr",,[ Emik bil - emizbik(9)

Spin two

(2, 0; 2)

(0.2; 2)11)

i {)ik Tmnmn} {)jTk..i..

(1, 1; 2)

-Tk;n-itJ;kTmnmn)tJiJ

T 1nZn +T1n;n -

(2, 1 j 2)

(14) t-T1"i"-

i r5;kTm"m,,) r5il

[(Ti"k" + Tk"i" -i lJikTm"m") lJi, + (Ti"",

-ilJi, Tm"mn) lJikJ -[(Ti"k" + Tk";,, -

+ (ri""' + Tz,,;,,- ilJi,.Tm"m,,) <5ikJ (1, 2; 2)

~
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"
~{[(T/"k" + Tk,,/,,- it5,kTm"m,,)t5..+ (Ti"k"+ Tkk"i"-

-it5ikTm"m,,) t5/1 -i t5/i(Ti"k,,+ Tk"l" -it5lkTm"m,,)] +

+ [(T"",,+ T"""-it5"Tm,,m..)t5,k+ (Ti"I"+T1,,i"-

-i t5i!Tm"m") t5/k -it5/i(T",k" + Tk"I" -it5tkTm"m,,)] -
.

-[tt5.k(T/"i" + .1j"/,, -i t5/iTm"m,,)]} (2,2; 2)

Spin three

(16)

(2, I; 3)

[1(Tifrr' + Tirr'f + ;rfirr' = Tfrr'i +Trr'ij)Crr'mCmkt -

-ibif(T rr' + T..rr'..+ Trr, )crr'mcmkt-

-.-!(T..frr' + T"rr'f + Tf..rr'+ l'irr'.. + Trr.f.. it- Trr...Jcrr ..Cik! -

-i(T..,rr' +T"rr'..i +Tt..rr' + Tirr'..+ Trr...,+ Trr.i..)Crr..Cik!]

(17 [i(Tk,rr' + Tkrr't+ T1krr' + Tlrr'k+ Trrlk +Trr,kz)8rr'm8mi;~

-i<5k'(T rr' + T..rr'.. =Trr )8rr'm8mi;-

-.!(T..,rr'+ T..rr" + T,..rr' + T,rr'..+ Trr,..1 + Trr,I..)8rr..8i;!

-!(T..krr + T..rrk + Tk..rr + Tkrr..+ + T"k.. + T r..k)8rr..8,;J (1.. 2; 3)

(18)

(2, 2; 3)

[t(Tik + Tirr.k + Tkirr. + Tkrr.i + Trr.ki + Trr,ik)8rr,m8m;1 +

+ t(T;krr. + Tirr'k + Tk;..., + Tkrr'; +T...,jk + Trr,k;)8rr'm8mil +

+ t(Tilrr. + T,rr.1 + T1irr~ + T,rr'i+ Trrli +Trrit)8rr'm8m;k+\
+ t(T;,rr. + Tirr'l + T1;rr'+T,rr'; + T...,li+ Trr;;!)8rr.m8mik -

-i(T "" + T"rr." + T""rr.)(8milt5ik + 8milt5ik+

+ 8mJkt5il+ 8mikt5iJ8mrr']

Spin four
'1{8[(Ti/kl+T~/lk+Tikll+ Tikl/+Tillk+ Tiklk;) +

+ {T/~kl +Tlilk + Tlkil + Tlkli+Tjl~k + T/,k.J +

+ (Tkili + Tk/il + Tkili + Tki/l + Tk.il + Tkl/J +
+ (T,;lk + TlikJ + T1k;1 + Tlk/i + T1;ki+ 1'1;ik)] -

-,.,. i<5i/[(T kl + T 1k + T..k..1 + T..kl..+ T..1..k + T..1k..) +
,

+ Tk 1 + Tkl + Tk..l.. + T1k + T1..k.. + T1 k)] -

-i<5ik[(T /I+ T..",/+ T../..,+T..;,..+T..1../+ T..,/..) +
, -,' + TI ,+ TI..,..+ TI, + Ti /+T1../..+ T,; )] -

-i<5il[(T"..lk+ T kl+ T../..k+ T..lk..+ T..kl.. + T..k../) +

;.,
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\"; i
+ T; k+ T;..k..+ T;k +Tk i+ Tk..i..+ Tk; ]~..'

-i,};k[T ,! + symmetrize in the four indices to g~t 12 terms] ,.

-'-- i,}i![T ;k + symmetrize in the four indices to get 12 terms] -

-i,}k![T ,;+ symmetrize in the' four indices to get 12\terms]--o,

+ M[Tmm ,},J,}k! + T..m..m,},k,};i+ Tm m,}i!,}ik]} .

In the process of reduction we have systematically employed the well-knQwn
properties of the Levi-Civita symbol and in particular the identity

15,",", 15pp' 1518a{Jy8a'{J'y' d"I1'.dlly'dy,,'+

+d"y.dB,",idyIJ'. <5"", <5py' <5yp; ~"v,rjfJfJ'rjv"' ~~{J'~{J~'~vv'

One particular point deserves mention! The scheme of reduction employed
here exhibits the various parts with spin 11, 0<11<4 as fourth-rank tensors;
of course we could make a one-to-one correspondence of one of these parts
{).,I"; 11) with a tensor of rank 11 obtained from T iik! by linear operations.
But for the applications we have in mind it is more convenient to leave them
in their present form. It is alsQ worth noting that in this terminology there
are no isotropic tensors with spin ilifferent from zero; of course there are iso-
tropic tensors of all ranks {except 1) since there are spin ° parts in a general
tensor of any rank except one.

To illustrate the metb,od, consider the part (1, 1; 1). Since {ij) and (kl)
indices are antisymmetrized, they can be contracted using the Levi-Oivita
symbols e/X(f' , epk'!' leading to a second.:rank tensor t/XP which is now to be
aritisymmetrized giving t/Xp- tp/X with ~pin 11 = 1. We can now restore the in-
ilices using the Levi-Oivita symbols e/Xii' epk! thus finally obtaining

T(l,l;l) T (tikl = t'fk'l e"t'i' efJk'I' e"ti efJkl
epi;eakJ

which is the'result given above. By playing with the Levi-OiVita and Krone-
cker symbols tbe irreducible tensors (I., ,u; v) can also be -written in appar-
ently different looking forms, which are same within a multiplying constant.
For example,

Ti'J'k'I'ept'i'epk'I' (e..tiepkl- eptie..kJ

can be written in the form

Tiikl Tijkl T 'ilk + Ti'lk Tklii +Tklii + T1~ii + T1kii Tlkl'

by making use of the identity

(6ii,611' (),f~i"8,,1'1' 8"11

..
..,
~
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3. -Application to stochastic dynamics.

A spin-one system in quantum mechanics is a three-level system whose
states transform as the components of a vector under rotations. Being a three-
level system the most general admissible state is a nonnegative Hermitian
3 X 3 matrix with unit trace; hence a general state is specified by 8 independent
real parameters lying in appropriate domains. The most general dynamical
Jaw then consists in. stating how these 8 parameters vary as a function of

I
time, with the restriction that the temporal changes do not lead these para-
meters ()utside the allowed domains.

Let us consider a general 3 X 3 Hermitian matrix M and its parametri-
zation in terms of 3 real parameters r, Po, qo and three complex parameters
PI' qI, q2 :

~

.V2
r + PI qo q2

*PI+,
~

q! Pl ql
2qoM r

-\12

p~ q~*

q2 Po+ q(}r
-\/2

Under an arbitrary unitary transformation M-+ UMU+ = M we get anew
set of six parameters which are linear combinations of the old parameters.
But there are three invariants which may be written

A= 3r

B = r'

o=r

4rqo- (q~+qlq: + q:lq:+p:+ P1P:) ,

r(q~ + qlqi+ q:lq: + P: + P1P:) +
+ ( :I* :I * + *) + ( * *

)qo PO -PIP.l -qo- qlql q:lq:l PO Poqo + PIPl + PI ql +

+ i(q:p: + q8P::1-q~ + qOq2q:) -t(q2q;2 + q:q: + ~- qOq2q:) ,

which are the coefficients of the characteristic equation of the Hermitian
matrix M :

detlM AI A3+AA2 B). + (} 0

If we now restrict M to be a density matrix (! then M must have unit trace
and be nonnegative. Consequently ..4. = 1 ~nd the other two invariants must

...
~
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lie withi~ the domain bounded by the C-axis and the arcs OF, FQ defined

by tl;le equations
3B)t270,= 9B -2 =f2(1

This domain is shoWB shaded in Fig. 2; note that w~ile the density matrices
form a convex set since these unitary invariants are not linear in the density

matrix parameters, the allowed
C domain is not convex.

Following CARTAN, we observe
that the parametrization of the
matrix M is such that the ma-
trices depending on p, q, r trans-
form amongst themselves under

B rotations as irreducible tensors
.with 3, 5 and 1 independent com-

ponents respectively, provided the
Fi~. ~. -.Allowed domains for the .charac- angular momentum matrices are
terlstlc parameters A, B of the denslt,T ma- h th f II .

9 standard..c osen as eo oWln
trlx of a 3-level system.

set:

-1--
2r

..
0 1,

~
r,

~i

v2

J

~
00 0 0

1

-v;-2

1

V2

-i

~
J2 00J -

1-

i
-
-\il2

1

vz

i

v2

0 00 0

~)

( 1

Ja= ~

o

o

o i

The stochastic dynamics of this system is completely specified by the
32 X32 stochastic matrix A,..".",(t) given by the defining relation

f!rB(t) == ArBr'B'(t) f!r'B'(O)

with summation over the repeated indices r' 8' being understood. The sto
chastic matrix satisfies the, following properties :

for all x and y

A8.8'.' = (A.8.'8 )*

A * *
.8.'8'Y. Y811).,11)8' ;;;;. O

Arr r'8' = 6.,8'
.

..

.c
~
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corresponding to hermiticity, positive definiteness and normalization of the
density matrices.

The operation of summation over repeated indices corresponds to con-
traCtion of tensors ~n View of the transformation properties of the quantities
p, q, r under rotations. Hence it follows that the irreducible parts (A, Iti"}
in the reduction of the stochastic matrix considered as a fourth-rank. tensor
.A,ik! has the following interpretation: it furnishes the specific coefficient ill
the contribution of the irreducible spin It part of the density matrix (!kZ(O) in
the expression for the irreducible spin A part of the density matrix (!'i(t).

In particular the normalization condition .Arr.r,8' = t5r'8' yields imme-

diately

.Atikl[t; (0"u;,u)J 0

If we know further that the dynamics possesses any symmetry property, it
would be reflected in the dependence of A;;kJt, {A., ,u; 11.)] on the index 11. For
the isotropic case, for example we have

Ai;k~[t; (A, ,u; v)] 0,

Even if the system is not isotropic, say for the relaxation of a spin system
in a cubic crystal lattice, the crystal symmetry prevents the existence of any
spin I or spin 2 tensors invariantly associated with the lattices; consequently
the parts of the stochastic matrix with 11 = I, 2 must vanish for such a re-
laxing system provided no external magnetic field is present. For more com-
plex crystal classes the discussion is not so straightforward.

4. -Systems with axial symmetry.

Excepting for the familiar case of isotropy, the simplest special case is
that of axial symmetry., It is of particular importance in the discussion of
the relaxatioJl in a strong external magnetic field in an isotropic medium (or
one in which an ,axis of axial symmetry coincides with the direction of the
magnetic field). We denote the unit vector in the distinguished directioft by ~.
Given ~uch an axially symmetric system, any tensor of spin v can be expressed
as linear combinations with numerical coefficients of the (2'11+1) spherical har-
monics y:,(~).. Consequently apart from a multiplicative constant a()., I-t; v)
the irreducible parts T,ikl().' I-t; v) are uniquely determined and mf1Y be written
down immedi~tely. The-y are given below, where we have omitted the pos-
sible multiplie~tive constant; the most general axially symmetric fourt~ank
tensor is an arbitrary linear combination of these tensors.

"'
~

~
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Reduction of T 11kl(;)

Spin zero

bjibkl

(bjkbil

(0,0; 0)a

bilb;k)

bil b;k -

(2) (.1. .1 ; 0)

i 13ii 13kJ(3) (~ik~;! (2,2; 0)

Spin one

(1, 0; 1)

(0,1; 1)

(1,1; 1)

(2, 1; L)

{4)

"(5)

{R)

(7)

(1,2; 1)

(2,2; 1)

(8)

(9'

~"e"li~kl

~"e"kl ~Ii

~Ieikl- ~jelkJ

(~ieikl + ~ieikl -i~li ~memkJ

(~kelii + ~Iekli -i ~kl~memlj)

r ~memik ~II + ~memik ~II + ~memiZ ~ik + ~m emit ~Ik}

Spin two

(2, 0; 2}

(0,2;2}

(1..1; 2)

(13) (2, 1; 2)

(14) (1,2; 2)

(15)

(~i~i-Y3biJbkl

(~k~!- Y3bkJbii

[(~i~k- Y3 bik) bil-(~i~k -Y3bik bi~] -

-[(~i~1 -Y3biJ bik)- (~;~I -yebiJbik]

[~i~kbil + ~i~kbil] -[~i~/bik+ ~i~.bik}

[~i~kbil + ~i~lbik] -[~i~kbil + ~i~/bik]

{[(~i~k-tbik)bi!+ (~i~k-tbik)bil-ibii(~k~I-Y3bk2)]2+ .

-[(~i~1 -t biJ bi~+ (~i~J -tbi/)bik -i bii (~k~.Z -Y3 bkJ}

-[tbkl (~i~i -tbiJ]} (2,2; 2)

Spin three

(2,1; 3)

(1,2; 3)

(16)

(17)

(18)

(2,2; 3)

[l~i~i~"e"k'- i r5ii~"~,,kl- t~ieik,-l~ieik,J

[1~k~tP;2Ie"ii- i r5kIv~"e"ii -i~kelii -!~lek/J

[(l~/~k- tr5/k)~memil + (l~/~,- i r5iJ~memik +

+ (l~i~k- t r5ik) ~mem/l + (1~;~,-lr5iJ~mem/kJ

0-
~
--
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Spin tour

(19) [i;i~j~k~l- i(t5ij~k~l+ t5ik~J~; + t5il~j~k

+ t5jk~i~1 + t5jl~i~k + t5kl~i~j) +

+1\(t5ift5kl+ t5ikt5fl+ t5i.zt5jk)] (2, 2; 4)

In its application to stochastic dynamics of axially symmetric spin-I sys-
tems these universal forms imply certain geometrical connections with respect
to the changes in multipole polarizations p, q as functions of time, These
connections are most early expressed in the following manner: Let (!~~) , (!~~) ,
(!~~) be the spin 0, I, 2 parts of the density matrix (!i1' These parts in turn
may be decomposed. in relation to the vector ~ as follows :

(0) ~= (!1/ U/J[!~~) ~ [!(0, 0) 1,

(1 O~ ) (1) f:
(1 , = Blik{Jii "k

l?i(l, 1) = (1~:) ~ j
,,<1) -
0:11

(!(2, (

(!/(2, ]

'/i(2, ~

{}(2) ~
O:ij

Then the axjally symmetric dynamics mixes only [!(0, 0) = 1 with itself,

[!(1, 0), [!(2,0) amongst themselves, [!i(l; 1) and (!i(2, 1) amongst themselves
and [!i1(2, 2) with itself.

5. -Concluding remarks.

The previous sections outline a method of reduction of arbitrary tensors
in their cartesian form. The same general method used here could be used
for higher-rank tensors also ( 2) but the task becomes rapidly complicated. Need-
less to say, ina physical problem like that of hydrodynamic turb1ilence where
the Cartesian form is very desirable, the decomposition is only the kinematics
of the problem and the interesting question is the transcription of the dynam-
ics, contained in the Navier-Stokes equations, in terms of these invariants.
The complexity of this aspect of the problem may be seen jrom the fact that
so far only the second-rank axisymmetric case has been completely studied;
for a comprehensive discussion of the decay of turb1ilence of at least a partial

..,

..,
~

-(2) l= l=
-eii "i"i

~ (2) l= (2) l= l= l=

-eii "i- ekl "k"I"i

(2) (2) l= l= l= l== eii -ekl "k"I"i"; .
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study of higher-ordel' correlations is necessary, The methods developed here
provide the initial steps in such a study; a more detailed discussion is beyond
the scope of this work, but will be presented elsewhere.

The restrictions imposed by crystal symmetry ?n the various irreducible
parts of the fourth-rank tensor have only been touched upon here, but this
asI\ect has to be examined in the detailed study of the relaxation mechanism
of dipole and quadrupole polarizations of spin.:one ions at lattice sites. This
connection is however best studied with reference to the particular crystal

under investigation.
The decomposition outlined here also suggests anew representation of

crystal properties; one splits a tensor into its irreducible parts and each irre-
ducible part is given a geometric representation. This last one is facilitated
by the fact that an irreducible part with spin y can be associated with a homo-
geneous form of degree y in three variables; interpretation of these variables
as homogeneous co-ordinates in a plane and a canonical choice of the homo-
gene~us fom would give a plane curve associated with each irreducible part.
This program is currently being carried out by S.MJ:>RIN in relation to various

tabulated crystalline properties.
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RI~-\.SSUNTO (..

Si presenta uno schema di rid~ione per rappresentare le parti irriducibili di un
tensore di quarto ordine. Tale schema di"rid~ione intereBBa in rapporto allafisica
dei cristalli, turbolenza idrodinamica, ecc. Come applicazione immediata si discute bre-
vemente la dinamica stocastica di un sistema di spir! uno.

(.) Traduzione a cura della Redazione.
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