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Summary. — Recent work has clearly demonstrated the fact that useful

predietions in the Ne'myay, GELL-MANN unitary symmetry theory of

strong interactions follow from consideration of invariance under the Weyl

reflections (generalized charge symmetry operations) of SU,. Here we

describe a fairly rapid and general algebraic method for obtaining the

offect of the Weysl reflections on the basis vectors of an arbitrary irre- i
ducible representation (IR) of SU,. The important feature of the method
is that it applies to those basis vectors of the IR, which belong to the
nonsimple weights of the IR and which can therefore not be treated
by inspection of the weight diagram of the IR. Results are given for
certain IR’s of SU, relevant to the Ne'eman-Gell-Mann theory — the
8,27 and 35 componont IRs (1.1) (2.2) and (4.1) of SUj.

1. — Introduction.

It i3 now some two years since NE'BMAN (1) and GRLL-MANN (2) introduced
the theory of strong interactions that has come to be known as the eightfold
way by virtue of its association of the stable baryons and the stable mesons

(") Researcl supported in part by the U. 8. Atomic Energy Commission.

(Y)Y Y. NE'Baran: Nucl. Phys., 26, 222 (1961).

(*) M. GeLr-Maxy: Cal. Tech. Report CTSL-20 (1961), unpublished, and Phys.
Rev., 125, 1067 (1962).
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with the eight-component irreducible representation (*) (IR) of the group SU,.
Since then it has been seen to provide a promising means of classification ()
of many of the recently discovered bavyon resonances. In view of this it has
become important to derive some specifie theoretical pl'edict-ions of the theory.
Further, because of the great labour involved in all but the simplest cases of
using numerical values (3) of the CG coefficients of SU, to obtain them, it
has become apparent that more economical technigues must be sought. One
example of such a technique—a generalization of the method of Shmushke-
vich (°) in charge-independent theory—is currently being examined systemati-
cally by the present authors (?). Another technique exploits the fact that inva-
riance under S U,implies invariance under certain discrete transformations known
either as «generalized charge symmetry transformations » (%) or « Weyl reflec-
tions » (3). Its importance has already been stressed by Y.aaacrour (*) and
by Marrrews and SALAM (3). LEvingox, Lipxiy and Mesorov (1) have made
extensive application of it. In this paper we addvess ourselves to the fask
of providing a general and algebraically economical method of finding what
is the effect of the Weyl reflections on the basis vectors of an arbitrary IR
of ST7,.

In the use of SU,in the classification of particles and resonaunces, we intro-
duce for any TR of SU, a system of orthonormal basis vectors | IvY;, where
I(I+1), » and ¥ are eigenvalues of operators of 8T7, which may be iden-
tified with total isospin, its z-component and hypercharge. In a given IR,
each allowed pair of values » and Y defines a weight (%) of the IR and a point

(*) Terminology relating to Lie groups and their Lie algebras is as given by
G. Racan [Group Theory and Spectroscopy, Princeton lectures, (1951)]. See also
R. E. Beureps, J. DrETLEIN, €. FrRONSDAL and B. W, LEe: Rev. Jod. Phys., 34
1.(1962), cu

(*) 8. OxUBO: Prog. Theor. Phys., 28, 24 (1962); 8. L. Grasnmow and J. J. SAKURAT:
Nuovo Cimento, 26, 622 (1962); S. L. Grasmow and A, M. RoSExFELD: Phys. Rev. Lett.,
10, 192 (1963).

(®)y A. R. Epmoxps: Proe. Roy. Soc., 268 A, 567 (1962); M. A. RasuiD: Nuovo
Cimento, 28, 118 (1962). ’

(°) I. M. Suvusukevicu: Dollady dkad. Naul (SSR), 103, 235 (19855). See also
R. E. Marsuax and E. C. G. SupaRSHAN: Introduction to Llementary Particle Physics
(New York, 1961), p. 185. _ ‘

() C. Durremoxp, A. J. MACFARLANE anid E. C. G. SUDARSHAN: to be })11b1§$h&d.
See also E. C. G. Suparsuax: in Proc. o] Athens Conference on Recently Discovered
Resonant Particles {Athens, Olio, April 1963), to be published, and, for a simple example
of tho generalized Shmushkevich technique, see, . DULLEMONYD, A. J. MACFARLANE
and E. C. G. Suparsuax: Phys. Rev. Lett., 10, 423 (1963).

(8) ~ . T. MarTuews and A. Sarax: Proc. Phys. Soc., 80, 28 (1962).

(") Y. Yayacucui: FProg. Theor. Phys. Suppl., 11, 1, 37 (1960).

('% C. A. Levixsoy, H. J. Lirkix and S. MESHKOYV: Phys. Lett., 1, 44, 125 and
307 (1962); Nwuovo Cimento, 28, 236 (1962); Phys. Rev. Lett., 10, 361 (1962).
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in the (real, Euclidean) two-dimensional weight space of the ITR. According
as there is one or more than one allowed I-value for a given weight of the IR,
it ix called simple or multiple. For basis veetors of the TR which beloug to
its simple weights, it is well known (1) that we can obtain the effect of the
Weyl reflections by inspection of the weight diagram of the IR (i.e. of the
set of all allowed weights of the IR regarded as points of its weight space).
Here we show how to obtain the effect of the Weyl reflections on basis vectors
of the IR that belong to multiple weighits, by a method involving only general
properties of SU, and of the particular IR concerned., This is in marked con-
trast to the previous work (39) on the subject, which treats the IR (1,1) of
SU; by a method which involves the explicit construction of its basis vectors
in terms of products of basis vectors of the fundamental IR (3) of 877, and
which accordingly does not generalize readily to other relevant IR’s.

The material of the paper is organized as follows. In Section 2, a brief
statement of relevant properties of ST; and its IR’s is given. In Section 3,
we discuss Weyl rveflections and illustrate our method with reference to the

IR’s (1, 1) and (2, 2), giving a full complement of results. We append also

results for the IR (4, 1).

2. — Properties of the IR’s of SU,(4,).

We here list various facts regarding the IR’s of SU,, or more precisely of
its Lie algebra (11), 4,.
4, is generated by a set of eight elements,

(2.1) H,, H,, B, E,, F

+2 43

which obey a standard set of commutation relations [ef. eqs. (2.12), (2.17)

and (2.18) of the paper (3) by BERENDS ¢t al.]. Contact with physics is achieved
by the identifications

(2.2) V3H, 1, VBE,—~1I, = I 441, 2H,—-Y.

It follows that for any IR of 4,, we may choose an orthonormal system of

basis vectors [IvY), where I(I +1), v and Y are respectively the eigenvalues
of I, I, and Y. Each allowed pair of values », ¥ determines a weight of
the TR. We represent this as a vector with components » and ¥ emanating
from an origin in a real two-dimensional Euclidean space called weight space,

(') The notation is that introduced by E. CArTAN: Thése (Paris, 1894). The sub-
seript 2 refers to the rank (®) of the Lie algebra.
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The set of all weights of the IR, thus represented in weight space, constitutes
its weight diagram. It, for a given weight with components » and ¥, there
are n possible values of I such that [IyY) is a basis vector of the IR, the weight
is said to be of n-fold multiplicity; and, it »==1, siinple.  If the highest
weight (12) of a representation of 4, is simple, it is an IR and conversely,

The IR’s of 4, may be labelled by a pair of nonnegative integers (A, u)
whose significance (%) we pow explain.- If w(l, 0) and w(0, 1) are the highest
weights of the fundamental TR's (°) (1,0) and (0,1) of 4,, then (4, ,u)' refers
to the (unigue) IR of 4, with highest weight w(l, u) given by

(2.3) w(l, u) = Jw(l, 0) + pw(0, 1),

The fundamental IR (1,0) of A, is that which arises from the self-represen-
tation of ST,. Tt is realized by the matrices

/ \

/Y00 a1 10 0
I.=_-10 -1 o), Y=2{0 1 0],

9

“\o o0 o 3% 0 -2

(2.4) 0 1 0 0 0 1 0 0 0

Ii=10 0 0),vBE,=[0 o o s VB, ={0 0 1],

0 0 0 0 0 0 0 0 0
I—:Ij-y E—2=E§y E~3:E;7

operating on the three basis vectors @, e=1,2 3)

1
m=0)=11d,
A O -
(2.5)
0 0
P=11 E}_'?lf%>y @a=|0 EIOO~%>
0 1

The IR (1, 0) thus has highest weight 20(1, 0) = (3, ), but it is not em-

(*2) The highest weight is (conventionally) defined (®) to be the weight with the
highest value of » and the largest value of ¥ for that value of ».

('*) Sinee there iz a 1:1 correspondence between IR’s of ., and Young shapes with p
doxes in the first row and 7(¢<Cp) boxes in the second row, a [, ¢} labelling of IRs is
qossible, (cf. ref, {%)). Tts relationship to our notation follows from A=p—q, p=q.
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[919] WEYL REFLECTIONS IN THE UNITARY STYMMETRY THEORY OF STRONG INTERACTIONS

ployed in physical applications, since in it ¥ has nonintegral eigenvalues (sec
later remarks). The IR (0, 1) of A, is the IR complex conjugate to, but not
equivil-lent to, (1, 0). It has highest weight, w(0, 1) = (4, — 1) so that (2.3)
becomes

(2.6) w(, 1) = [32+u), 3A—pw)].

The IR (4, p) of 4, is known (®) to have dimensionality

(2.7) A% 1) = 30+ D+ +p +2) .

To obtain its weight diagram, i.e. the allowed weights and their multiplicities
we have the following procedure (14). For a given IR (2, u) there corresponds,
to each pair of values f and g allowed by

(2.8) At p>fzp=g9-0,

an (I, Y) multiplet defined by

| Lo 2
| 2.9) I =41-g), et s f - S0
: 2

:

. T-3Y = =g+ 207,
| (2.10) Y=g — 30+ 2p).

Since —I<v<I gives allowed » values for each I, we may thus obtain the

weight diagram of the IR (1, u). Evidently f==2 4 u and g=0 give the
; highest weight of (2, x) in agreement with eq. (2.6). We note from (2.10) that
only those IR’s (2, u) for which A=pu (mod. 3) [so that (A-+24) is divis-
ible by 3] can feature in physical applications, for all others possess non-
integral eigenvalues of ¥. We note also, from (2.9) and (2.10), that all (I, ¥)
multiplets contained in (2, 0) satisfy

(2.11) I=3Y+4 14,
and that all (I, ¥) multiplets contained by (0, ) satisfy

(2.12) I=—3Y+43u.

[0

In what follows, we shall need explicit formulac for the nonvanishing matrix
elements of the nondiagonal elements of Ay in an arbitrary IR (7, p) of 4,.

() 8. OxUBO: Prog. Theor. Phys., 27, 949 (1962).
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These have been given by BIEDENIARYN (**) and read as

2.13) D+ 1Y LAY = (T a)(] -+ + 7,

L) 18I+ 4y - IY L 115, LYy
= +v D~ p 3723y 0 D7 20+ 3(T - 17

(SO S § O S VLV =

(2.15) 187 — 3y - 1Y - leszrY/\ ==
== dt o B = 4007 = 20— 37— 3y 1)

At p 80— 3¥ P er -
2.16) I_=1I* y L, = v » Loy= 4 [I:;:l,‘ E;‘Ez:’ .

Regarding phases, we comment that our use of the standard phase in (2.13),
(2.16) for I, leads to trivial differences of sign between our results and those
of previous authors, who departed from it.

We now proceed to our discussion of the Weyl reflections of A,

3. — The Weyl reflections.

From a mathematica] point of view, the most natural discussion of the Weyl
reflections of A, refers to two-dimensional Luclidean space (call it m-space)
With co-ordinates my and m, related to our and ¥ by [cf. eq. (2.2)]

(3.1) V8my =y , 2m,=1Y.

This, of course, corresponds to the use of the canonical basis H,, H,, E.,
£, Ein 4, rather than to the use of the basis I, Y, I, E_,, F., natural
on physical grounds. In m-space, the Weyl reflections (>1%) of 4, are defined
to be reflections in the lines

(3.2) Mm=0,  my=4In,,

which [provided equal scales on the m, and M axes are used] make angles 90°,

————

(*3) L. C. BIEDENHARY : Phlys. Lett., 8, 69 (1962).
{(**) H. Wexr Princeton lectures (1935), unpublished. X. Jacosson: Lie Algebras

(New York, 1962), p. 119.
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.

30% and 150° with the positive m, divection, and which are perpendicular to

the directions of the positive roots (3) of 1, as represented in the same space.

If, for any IR of 4,, all allowed pairs (m,, m,) are plotted, the perfect sym-

metry of the set of points m-dingram thereby obtained with respect to the

axes (3.2) of the Weyl reflections becomes appavent.

Now, we have elected not to use m-space, preferving to work in terms of
the quantities » and Y of immediate physical significance. We can however
achieve the same manifest symmetry of weight dingrams with respect to Weyl
reflection axes as occurred naturally in the m-xpace description by use of a
scale that assigns to the 17 unit a length /32 times that on the y-unit. The
Weyl reflection axes (3.2) are then the lines

(33) VY = 0 3 1” = —7— z‘p y

making angles 90°, 30° and 150° with the positive p-axis. We ecall them the
1, 2 and 3 axes [in agreement with the notation of vef. (1] and denote the
operations of reflection in them by T, T, and W, respectively. Evidently
we have

(3.4) Wi=1, o oa=1,2,8,
and
(3.3) s = W, W T,

so that the Weyl reflections and their distinet products form a discrete group
of order 6, isomorphic to the symmetrie (permutation) group S; on three objects
and called the Weyl group of 4,. In what follows, we need (some of) the
commutation relations of the T, with the elements of d4,. To obtain them
it i3 convenient to use matrix representatives of the operators in some IR
of 4,. We use the IR (1, 0) of 4,, which corresponds to the self-representation
of SU;. We choose for the matrix representatives of the T, acting on the
@, basis of (2.5) the forms -

1 . 1 . . . . 1\
(3.6) “71 = — | ] . -1, ﬂ?zz — i . . 1 , 73 [ 1 .
1, -1 - 1 - -

Apart from the minus signs, this is a very natural choice, one which we are_

led to either by inspection of the weight diagram of (1, 0) or else by noting
the isomorphism of the Weyl group of A, to S,. The minus signs serve to
ensure that det W _ =1, x=1,2,3, so that the T, may be regarded as ele-
ments of the group ST;. TUsing (3.6) in conjunction with (2.4), we obtain the
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We note only the following

WY W, = — (I, +1Y),
(3.7) EL,W, = W,H,,
BLW, = WE.,.

In view of the close relationship of ¥,

to the charge symmetry transforma-

tion, invariance under Wy will not yield new results. Accordingly, we conflne

Fig. 1. — The weight diagram for
the IR (1.1) of 4,. We use a scale
wherein the ¥ unit bears the ratio
V/3/2 to the » unit. A single circls

at a point (v, ¥) signifies that -

the weight (v, T') is simaple; a
double circle that it has multipli-
city two, ete.

of W on the basis vectors of (1,

the results

(3.8) W,|1 —1
(3.9) W.lt %
(3.10) W1 1

by inspection of Fig. 1 (except for the signs). The sign of (3.8)

(') We could also Lave obtained the commutation relations of the Wy, W,
with the elements of 4,, without reference to the fundamontal IR (1, 0)

attention to W, and W;. As is obvious from
our previous and already well.
known (%), we may, by inspection of the
weight diagram, immediately determine the
effect of W, and W, on a basiy vector ¥
of any IR (4, u) which belongs to a simple
weight, at least up to a sign whose presence or
absence is irrelevant in most of the physical
applications envisaged in refs. (82). For basis
vectors |IvY)> which belong to nonsimple
weights, we cannot proceed so directly; it is
really for the treatment of such basis vectors
that the present work has been undertaken.
We illustrate our method first for the case
of the IR (1, 1) of 4, and then for a more
complicated case, the IR (2, 2).

We consider first the case of the eight-
component IR (1,1) of 4,, whose weight
diagram is displayed in Fig. 1. For the effect
1) which belong to simple weights, we obtain

remarks

0= I} —1 -1,
~D=—]} 1 B,
0> = ]% % 1 ’ e

is arbitrarily

Wy
of 4, or any

other, by an argument involving the behaviour of the roots (®) of A, under the Weyl

reflections.
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selected and then those in (3.9) and (3.16) follow uniquely, e.g. according to

Weld 3 —1) ~ WoIelh —1 —1> by (2.13),
~ BW, 1 -3 -1 by (3.7),
~ Byl —10) by (3.8),
— =1 1) by (2.15),

the symbol ~ indicating the ommission of some positive numerical factor.
The next stage involves the weight (0, 0) to which belong the basis vectors
[1 00> and {00 0). Here as in all such situations, we begin with the basis
vector with the highest I-value and develop

Woll00)=+3W, 141 —10),

=V3E,W,|1 —10),
(3-11) =V3E[} -} -1,

V3

= 3100y —=j000),

using eq.s (2.13), (3.7), (3.8), (2.14) and (2.15). Since Wi=1, we get from
(3.11) the remaining result
(3.12) W21000>=—l/2§§100>——»;—[000>.

As a check on consistency we may derive (3.11) via an alternative route

33

Wol100)=+IW,I_|110)=—+/3E,[3}1).

The treatment of T, proceeds similaﬂf using the last line of (3.7) and the
matrix elements of F ;. The results are

(W,]1 10) = |}

)=

-1,

Wl B =i - -,
Well =10y =]} —3& 1>
(3.13) d : = ’
100> % lﬁ_g 110 0>
W3 == - .
1
100 0> _‘? —5 ||1000
/
f
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The method previously applied (%9) to the TR (1, 1) proceeds in two stages.
In the first stage the basis vectors of (1, 1) arve explietily constructed in terms
of products of basis vectors ¢, of the IR (1, 0) and basis vectors (*¥) ¢, of the
IR (0,1). In the second, explicit performance of the substitutions indicated
by (3.6) is carried out for the basis vectors so constructed. In view of many
different sign conventions used in the literature in the construction of a basis
for the TR (1, 1) in terms of ¢,, @, we append a construction consistent with
egs. (3.8)—(3.13): ' '

Vil 1 _0>:_<771952’
]1 0 0> = '\/’21(?71?_71— <7-’2¢2) ’
]1 —1 0= @0,

(3.14) 3 ¥ L= ¢,
IF—1 L= @,
12 31 =— ¢,
13 —3 -1 = @i,

10 0 0= \/%‘(_ 11— ¢2¢2+2(P3¢3) .

The 27-component IR (2, 2) of 4, has the weight diagram shown in Fig. 2.
For those of the basis vectors of (2.2) which belong to simple weights, we obtain

Y
©2) 0,2

-1,-2} (1, -2)
©,-2)

Fig. 2. — The weight diagram for the IR (2, 2) of 4,.

(1%) We use a bar to denote complex conjugation, since the more usual star has
come to denote a resomance.

y
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the eflect of W, by inspection of Fig. 1, in the form

(3.15) Wil 1 2= |2 2 o,
(3.16) Well 0 2> = (3 3 1y,
(3.17) Woll—1 2= |1 1-2),
(3.18) Wl 3 D= |3 1 D,
(3.19) WhE-3 D=—11 0-2,
(3.20) Wof2 —2 0> = |1-—1-—2),
(3.21) Wi =4 =1 = [§3—3-1),

wherein the first sign has been chosen positive arbitrarily and all that follow
are fixed, as in (3.9). We next consider the double weights (— 1, 0) and
(— 3%, —1); whose associated basis vectors are seen from Fig. 2 to mix under
Wy. As before, we start out from the basic vectors with higher I and, as before,
we obtain »
0 =vEE—1 -1~ v -1 -1,

0 — Vi1 -1 0.

Wpl2 —1
Welg —§ —1> =2 —1

Since Wj;=1, the effect of W, on i1—10> and [} —1 — 1) follows. We
summarize the four results in the Involutory matrix equation

(5.29) ' - ;2—10>]: VE =Rl -1 -1
. =10 T [ =vE —vE| [l -1 -1

Likewise for other pairs of double weights, we have the involutory matrix
equations

l%—%l}k _g \_/;5 rl%l)__1>
) 3 3 *°
(3.23) W, ~| 33 7
=31 \_3@ = 111-D
|2 1 0] [-v% % {13 1>J
3.24 Y, - Vi |
. " Ll 1.0)] VEVEILIEED

Now there remains only to find out how the three basis veetors that belong
to the weight (0, 0) mix under W, We develop

Wal2 0 0> = VIW, 1|2 —1 0),
= BWVEE -1 D - vElE -1 -1,

5413
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12 A. J. MACFARLAXNE, E. C. G. SUDARSIHAY and C. DULLEMOND [8506]

and

Wol1 00> = VIW,I,[1 —10),
= V3B~ Vi~ 1 — Vi1 -} 1)},
/15 2
V15 1 /3
— 222000+ 2]1 -
=12.000 4 5]1 00

i —3—]000>,

with the aid of (3.22) and other cquations. Using stzl, we can evaluate
W10 00) and hence complete the involutory matrix equation

(ool [0 VB VET[L ]

200 - X2 N2 s 00y

1200 i e Sl eow

y ' VG 1 V3

3.2 Wi j1o00y [=|_Y22 L V3 Iio4,
(3.25) o | > 6 5 3 | .
10005 Vs V3 Tt 000y
L 1L 3 33 1L |

The treatment of T, follows the same pattern and yields the following results

[ W1 —12y =|2—-2 o0, Wl 02)=]3 —3 ~1),
Well 125 =[1—-1-2), Wl $0 =1 o0-2,
Wel2 200 =]1 1-9), Wald —3 1 =3 -3 1,
W3- =13 §-1,

. -
S I [ER S5 B (R 2 FE RS
W, = \/: 9 ’
/O
1331 5 3 [
(3.26) wll2=1o] Vi VENIE -1
U=10] [V —vElIE —1 1)
ll110) Ve —VEIIFE -1
— - -~ = =r -
[2 00> % ‘%12 %"i (200
Vi 1 V3 .
Wel [100) | = & 7~ ||Irow
- -
V5 V3 1
000 2 Y2 - 000
! A R s ! /]
\“\ -
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It is suvely clear that we can handle any IR of A, in this way, treating

weights in inereasing order of multiplic-
ity and basis vectors belonging to any
weight in decreasing order of I-value.
Also it can be seen that treatment of
the IR (2, 2) of 4, by a method involv-
ing a suitable generalization of (3.14)
involves a great amount of arithmetical
effort.

The thirty-five-component IR (4, 1) of
A, has the weight diagram shown in Fig. 3.
The effect of T, and T, on its basis vece-
tors is given by the following set of
equations.

Y
0,2 (1,20 2,2

(-1, 2)
i 2 axis2

(2,1 (3iz2,1

>
— &0, )
/

096 /)y
& L o L
2 2 52

(-12,-3) 0712,-3)

o

Fig. 3. — The weight diagram for the

IR (4, 1) of 4,.

D= |2 2 0,

- W2 22 = |3 § 1>, W2 1
Wiz 02 = 3 31, W21 2= |1 1-2,
Wel2 —225 = |3 -3, Wli—-F D=—1—-1-25,
Wal2 =200 =—|1—1-2), W|}-3—1)=—[3 3 1,
] . _ ]
| 1 veaif,.
521 el S BV
i 3 3 - V24 1 33 ’
EERY 53 1231
D] _[-vEvE][121 0
- RE 311 = /8 /L 110>’
(3.27) 133 >3 Vig Vie|[ 1+ 4
W H%—%—w]: ~vIVvil[izs -1
HIEET B VEVIIt -]’
v lE—inl _[-vEvi|[lio-2
gt vEVE oo -2
120 0> 13 200
2 2
W, ~ = 7
100> 12_ ; 11005
, wl2-1o] _[-vEvi][iz—1-v|
Ur-100] | VIVI[[lE—t-D
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RIASSUNTO (%

Lavori recenti hanno chiavamente dimostrato che dallo studio dell’invarianza rispetto
alle riflessioni di Weyl (operazioni di simmetria di carica generalizzata) di SU, seguono

utili predizioni nella teoria della simmetria unitaria di Ne’eman, Gell-Mann delle inte-

razioni forti. Qui si descrive un metodo algebrico generale abbastanza rapido per otte-
nere leffetto delle riflessioni di Weyl sui vettori basilari di una rappresentazione irri-
ducibile (IR) arbitraria di SU,. Una caratteristica importante del metodo & che esso
si applica a quei vettori basilari dell'IR, che appartengono ai pesi non semplici dell’IR
e che quindi non possono essere trattati con lispezione del diagramma dei pesi dell’'TR.
Si dinno i risultati per aleune IR di ST, importanti nella teoria di Ne'eman e Gell-
Mann — gli IR a 8, 27 e 35 componenti (1.1), (2.2) e (4.1) di SU,.

(*) Traduzione a cura della Redazione.
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