A. J. MACFARLANE, et al. 1º Novembre 1963 Il Nuovo Cimento Serie X, Vol. 30, pag. 845-858 # Weyl Reflections in the Unitary Symmetry Theory of Strong Interactions (*). A. J. MACFARLANE and E. C. G. SUDARSHAN Department of Physics and Astronomy, University of Rochester - Rochester, N. Y. ### C. Dullemond Department of Physics, University of Washington - Scattle, Wash. (ricevuto il 3 Giugno 1963) Summary. — Recent work has clearly demonstrated the fact that useful predictions in the Ne'eman, Gell-Mann unitary symmetry theory of strong interactions follow from consideration of invariance under the Weyl reflections (generalized charge symmetry operations) of SU_3 . Here we describe a fairly rapid and general algebraic method for obtaining the effect of the Weyl reflections on the basis vectors of an arbitrary irreducible representation (IR) of SU_3 . The important feature of the method is that it applies to those basis vectors of the IR, which belong to the nonsimple weights of the IR and which can therefore not be treated by inspection of the weight diagram of the IR. Results are given for certain IR's of SU_3 relevant to the Ne'eman-Gell-Mann theory — the 8, 27 and 35 component IRs (1.1) (2.2) and (4.1) of SU_3 . ## 1. - Introduction. It is now some two years since NE'EMAN (1) and GELL-MANN (2) introduced the theory of strong interactions that has come to be known as the eightfold way by virtue of its association of the stable baryons and the stable mesons ^(*) Research supported in part by the U.S. Atomic Energy Commission. ⁽¹⁾ Y. NE'EMAN: Nucl. Phys., 26, 222 (1961). ⁽²⁾ M. Gell-Mann: Cal. Tech. Report CTSL-20 (1961), unpublished, and *Phys. Rev.*, 125, 1067 (1962). with the eight-component irreducible representation (3) (IR) of the group SU_3 . Since then it has been seen to provide a promising means of classification (4) of many of the recently discovered baryon resonances. In view of this it has become important to derive some specific theoretical predictions of the theory. Further, because of the great labour involved in all but the simplest cases of using numerical values (5) of the CG coefficients of SU_3 to obtain them, it has become apparent that more economical techniques must be sought. One example of such a technique—a generalization of the method of Shmushkevich (6) in charge-independent theory—is currently being examined systematically by the present authors (7). Another technique exploits the fact that invariance under SU_3 implies invariance under certain discrete transformations known either as «generalized charge symmetry transformations» (8) or «Weyl reflections » (3). Its importance has already been stressed by Yamaguchi (9) and by Matthews and Salam (8). Levinson, Lipkin and Meshkov (10) have made extensive application of it. In this paper we address ourselves to the task of providing a general and algebraically economical method of finding what is the effect of the Weyl reflections on the basis vectors of an arbitrary IR of SU_3 . In the use of SU_3 in the classification of particles and resonances, we introduce for any IR of SU_3 a system of orthonormal basis vectors $|I\nu Y\rangle$, where I(I+1), ν and Y are eigenvalues of operators of SU_3 , which may be identified with total isospin, its z-component and hypercharge. In a given IR, each allowed pair of values ν and Y defines a weight (3) of the IR and a point ⁽³⁾ Terminology relating to Lie groups and their Lie algebras is as given by G. RACAH [Group Theory and Spectroscopy, Princeton lectures, (1951)]. See also R. E. BEHREDS, J. DREITLEIN, C. FRONSDAL and B. W. LEE: Rev. Mod. Phys., 34 1 (1962). ⁽⁴⁾ S. OKUBO: Prog. Theor. Phys., 28, 24 (1962); S. L. GLASHOW and J. J. SAKURAI: Nuovo Cimento, 26, 622 (1962); S. L. GLASHOW and A. H. ROSENFELD: Phys. Rev. Lett., 10, 192 (1963). ⁽⁵⁾ A. R. Edmonds: Proc. Roy. Soc., 268 A, 567 (1962); M. A. Rashid: Nuovo Cimento, 26, 118 (1962). ⁽⁶⁾ I. M. SHMUSHKEVICH: Doklady Akad. Nauk (SSR), 103, 235 (1955). See also R. E. Marshak and E. C. G. Sudarshan: Introduction to Elementary Particle Physics (New York, 1961), p. 185. ⁽⁷⁾ C. Dullemond, A. J. Macfarlane and E. C. G. Sudarshan: to be published. See also E. C. G. Sudarshan: in *Proc. of Athens Conference on Recently Discovered Resonant Particles* (Athens, Ohio, April 1963), to be published, and, for a simple example of the generalized Shmushkevich technique, see, C. Dullemond, A. J. Macfarlane and E. C. G. Sudarshan: *Phys. Rev. Lett.*, 10, 423 (1963). ^{(8) .} T. Matthews and A. Salam: Proc. Phys. Soc., 80, 28 (1962). ⁽³⁾ Y. Yamaguchi: Prog. Theor. Phys. Suppl., 11, 1, 37 (1960). ⁽¹⁰⁾ C. A. LEVINSON, H. J. LIPKIN and S. MESHKOV: *Phys. Lett.*, 1, 44, 125 and 307 (1962); *Nuovo Cimento*, 23, 236 (1962); *Phys. Rev. Lett.*, 10, 361 (1962). in the (real, Euclidean) two-dimensional weight space of the IR. According as there is one or more than one allowed I-value for a given weight of the IR, it is called simple or multiple. For basis vectors of the IR which belong to its simple weights, it is well known (10) that we can obtain the effect of the Weyl reflections by inspection of the weight diagram of the IR (i.e. of the set of all allowed weights of the IR regarded as points of its weight space). Here we show how to obtain the effect of the Weyl reflections on basis vectors of the IR that belong to multiple weights, by a method involving only general properties of SU_3 and of the particular IR concerned. This is in marked contrast to the previous work (8.9) on the subject, which treats the IR (1, 1) of SU_3 by a method which involves the explicit construction of its basis vectors in terms of products of basis vectors of the fundamental IR's (3) of SU_3 , and which accordingly does not generalize readily to other relevant IR's. The material of the paper is organized as follows. In Section 2, a brief statement of relevant properties of SU_3 and its IR's is given. In Section 3, we discuss Weyl reflections and illustrate our method with reference to the IR's (1,1) and (2,2), giving a full complement of results. We append also results for the IR (4,1). ## 2. - Properties of the IR's of $SU_3(A_2)$. We here list various facts regarding the IR's of SU_3 , or more precisely of its Lie algebra (11), A_2 . A_2 is generated by a set of eight elements, $$(2.1) H_1, H_2, E_{\pm 1}, E_{\pm 2}, E_{\pm 3}, ...$$ which obey a standard set of commutation relations [cf. eqs. (2.12), (2.17) and (2.18) of the paper (3) by BERENDS et al.]. Contact with physics is achieved by the identifications $$(2.2) \hspace{1cm} \sqrt{3}\,H_{1} \rightarrow I_{z}\,, \hspace{0.5cm} \sqrt{6}\,E_{\pm 1} \rightarrow I_{\pm} = I_{x} \pm iI_{y}\,, \hspace{0.5cm} 2H_{2} \rightarrow Y\;.$$ It follows that for any IR of A_2 , we may choose an orthonormal system of basis vectors $|I\nu Y\rangle$, where I(I+1), ν and Y are respectively the eigenvalues of I^2 , I_z and Y. Each allowed pair of values ν , Y determines a weight of the IR. We represent this as a vector with components ν and Y emanating from an origin in a real two-dimensional Euclidean space called weight space. ⁽¹¹⁾ The notation is that introduced by E. Cartan: Thèse (Paris, 1894). The subscript 2 refers to the rank (3) of the Lie algebra. The set of all weights of the IR, thus represented in weight space, constitutes its weight diagram. If, for a given weight with components r and Y, there are n possible values of I such that $|IrY\rangle$ is a basis vector of the IR, the weight is said to be of n-fold multiplicity; and, if n=1, simple. If the highest weight (12) of a representation of A_2 is simple, it is an IR and conversely. The IR's of A_2 may be labelled by a pair of nonnegative integers (λ, μ) whose significance (13) we now explain. If w(1, 0) and w(0, 1) are the highest weights of the fundamental IR's (3) (1, 0) and (0, 1) of A_2 , then (λ, μ) refers to the (unique) IR of A_2 with highest weight $w(\lambda, \mu)$ given by (2.3) $$w(\lambda, \mu) = \lambda w(1, 0) + \mu w(0, 1) .$$ The fundamental IR (1,0) of A_2 is that which arises from the self-representation of SU_3 . It is realized by the matrices $$(2.4) \begin{cases} I_{z} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & Y = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \\ I_{+} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \sqrt{6} E_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \sqrt{6} E_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \\ I_{-} = I_{+}^{\dagger}, & E_{-2} = E_{2}^{\dagger}, & E_{-3} = E_{3}^{\dagger}, \end{cases}$$ operating on the three basis vectors φ_{α} ($\alpha=1,\,2,\,3$) (2.5) $$\begin{cases} \varphi_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \equiv \left| \frac{1}{2} \frac{1}{2} \frac{1}{3} \right>, \\ \varphi_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \equiv \left| \frac{1}{2} - \frac{1}{2} \frac{1}{3} \right>, \quad \varphi_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \equiv \left| 0 \ 0 - \frac{2}{3} \right>. \end{cases}$$ The IR (1,0) thus has highest weight $w(1,0)=(\frac{1}{2},\frac{1}{3})$, but it is not em- ⁽¹²⁾ The highest weight is (conventionally) defined (3) to be the weight with the highest value of ν and the largest value of Y for that value of ν . ⁽¹³⁾ Since there is a 1:1 correspondence between IR's of A_2 and Young shapes with p doxes in the first row and $q(q \leqslant p)$ boxes in the second row, a [p,q] labelling of IRs is qossible, (cf. ref. (5)). Its relationship to our notation follows from $\lambda = p-q$, $\mu = q$. [849] WEYL REFLECTIONS IN THE UNITARY SYMMETRY THEORY OF STRONG INTERACTIONS ployed in physical applications, since in it Y has nonintegral eigenvalues (see later remarks). The IR (0,1) of A_2 is the IR complex conjugate to, but not equivalent to, (1,0). It has highest weight, $w(0,1)=(\frac{1}{2},-\frac{1}{3})$ so that (2.3) becomes (2.6) $$\mathbf{w}(\lambda,\mu) = \left[\frac{1}{2}(\lambda+\mu), \frac{1}{3}(\lambda-\mu)\right].$$ The IR (λ, μ) of A_2 is known (3) to have dimensionality (2.7) $$d(\lambda, \mu) = \frac{1}{2}(\lambda + 1)(\mu + 1)(\lambda + \mu + 2).$$ To obtain its weight diagram, *i.e.* the allowed weights and their multiplicities we have the following procedure (14). For a given IR (λ, μ) there corresponds, to each pair of values f and g allowed by $$\lambda + \mu \geqslant f \geqslant \mu \geqslant g \geqslant 0 ,$$ an (I, Y) multiplet defined by 2.9) $$I = \frac{1}{2}(f-g), \qquad \qquad \boxed{1 + \frac{1}{2}} Y = f - \frac{2}{3} (\lambda + 2 \mu)$$ (2.10) $$Y = f + g - \frac{2}{3}(\lambda + 2\mu). \qquad \overline{I} - \frac{1}{2}Y = -5 + \frac{2}{3}(\lambda + 7\mu)$$ Since $-I \leqslant \nu \leqslant I$ gives allowed ν values for each I, we may thus obtain the weight diagram of the IR (λ, μ) . Evidently $f = \lambda + \mu$ and g = 0 give the highest weight of (λ, μ) in agreement with eq. (2.6). We note from (2.10) that only those IR's (λ, μ) for which $\lambda = \mu$ (mod. 3) [so that $(\lambda + 2\mu)$ is divisible by 3] can feature in physical applications, for all others possess non-integral eigenvalues of Y. We note also, from (2.9) and (2.10), that all (I, Y) multiplets contained in $(\lambda, 0)$ satisfy $$(2.11) I = \frac{1}{2}Y + \frac{1}{2}\lambda.$$ and that all (I, Y) multiplets contained by $(0, \mu)$ satisfy $$(2.12) I = -\frac{1}{2}Y + \frac{1}{3}\mu.$$ In what follows, we shall need explicit formulae for the nonvanishing matrix elements of the nondiagonal elements of A_2 in an arbitrary IR (λ, μ) of A_2 . ⁽¹⁴⁾ S. Okubo: Prog. Theor. Phys., 27, 949 (1962). These have been given by Biedenharn (15) and read as (2.13) $$\langle I_r + 1 Y | I_+ | I_r Y \rangle = [(I - r)(I + r + 1)]^{\frac{1}{2}},$$ (2.14) $$18\langle I + \frac{1}{2}\nu + \frac{1}{2}Y + 1 | E_{2}|I\nu Y\rangle =$$ $$= \{(I + \nu + 1)[\lambda - \mu + 3(I + \frac{1}{2}Y + 1)][\lambda + 2\mu + 3(I + \frac{1}{2}Y + 2)]\} \cdot [2\lambda + \mu - 3(I + \frac{1}{2}Y)]\}^{\frac{1}{2}}\{(I + 1)(2I + 1)\}^{-\frac{1}{2}},$$ (2.15) $$18\langle I - \frac{1}{2}\nu + \frac{1}{2}Y + 1 | E_2 | I\nu Y \rangle =$$ $$= -\{(I - \nu)[-\lambda + \mu + 3(I - \frac{1}{2}Y)][\lambda + 2\mu - 3(I - \frac{1}{2}Y - 1)]\} \cdot [2\lambda + \mu + 3(I - \frac{1}{2}Y + 1)]\}^{\frac{1}{2}}\{I(2I + 1)\}^{-\frac{1}{2}},$$ (2.16) $$I_{-} = I_{+}^{\dagger}, \qquad E_{-2} = E_{2}^{\dagger}, \qquad E_{\pm 3} = \pm \left[I_{\pm 1}, E_{\pm 2} \right].$$ Regarding phases, we comment that our use of the standard phase in (2.13), (2.16) for I_{\pm} leads to trivial differences of sign between our results and those of previous authors, who departed from it. We now proceed to our discussion of the Weyl reflections of A_2 . ## 3. - The Weyl reflections. From a mathematical point of view, the most natural discussion of the Weyl reflections of A_2 refers to two-dimensional Euclidean space (call it m-space) with co-ordinates m_1 and m_2 related to our r and Y by [cf. eq. (2.2)] (3.1) $$\sqrt{3} m_1 = \nu$$, $2m_2 = Y$. This, of course, corresponds to the use of the canonical basis $H_1,\ H_2,\ E_{\pm 1},$ $E_{\pm 2},\,E_{\pm 3}$ in $A_{\rm 2}$ rather than to the use of the basis $I_z,\,Y,\,I_\pm,\,E_{\pm 2},\,E_{\pm 3}$ natural on physical grounds. In m-space, the Weyl reflections (3.18) of A_2 are defined to be reflections in the lines (3.2) $$m_1 = 0$$, $m_2 = \pm \sqrt{\frac{1}{3}} m_1$, which [provided equal scales on the m_1 and m_2 axes are used] make angles 90°, ⁽¹⁵⁾ L. C. BIEDENHARN: Phys. Lett., 3, 69 (1962). ⁽¹⁶⁾ H. Weyl: Princeton lectures (1935), unpublished. N. Jacobson: Lie Algebras (New York, 1962), p. 119. 30° and 150° with the positive m_1 direction, and which are perpendicular to the directions of the positive roots (3) of A_2 , as represented in the same space. If, for any IR of A_2 , all allowed pairs (m_1, m_2) are plotted, the perfect symmetry of the set of points m-diagram thereby obtained with respect to the axes (3.2) of the Weyl reflections becomes apparent. Now, we have elected not to use m-space, preferring to work in terms of the quantities ν and Y of immediate physical significance. We can however achieve the same manifest symmetry of weight diagrams with respect to Weyl reflection axes as occurred naturally in the m-space description by use of a scale that assigns to the Y unit a length $\sqrt{3}/2$ times that on the ν -unit. The Weyl reflection axes (3.2) are then the lines (3.3) $$v = 0$$, $Y = \pm \frac{2}{3}v$, making angles 90°, 30° and 150° with the positive ν -axis. We call them the 1, 2 and 3 axes [in agreement with the notation of ref. (10)] and denote the operations of reflection in them by W_1 , W_2 and W_3 , respectively. Evidently we have $$W_{\alpha}^{2} = 1, \qquad \alpha = 1, 2, 3,$$ and $$(3.5) W_3 = W_1 W_1 W_1,$$ so that the Weyl reflections and their distinct products form a discrete group of order 6, isomorphic to the symmetric (permutation) group S_3 on three objects and called the Weyl group of A_2 . In what follows, we need (some of) the commutation relations of the W_{α} with the elements of A_2 . To obtain them it is convenient to use matrix representatives of the operators in some IR of A_2 . We use the IR (1, 0) of A_2 , which corresponds to the self-representation of SU_3 . We choose for the matrix representatives of the W_{α} acting on the φ_{α} basis of (2.5) the forms $$(3.6) \quad W_1 = -\begin{pmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}, \quad W_2 = -\begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{pmatrix}, \quad W_3 = -\begin{pmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}.$$ Apart from the minus signs, this is a very natural choice, one which we are led to either by inspection of the weight diagram of (1,0) or else by noting the isomorphism of the Weyl group of A_2 to S_3 . The minus signs serve to ensure that $\det W_{\alpha} = 1$, $\alpha = 1, 2, 3$, so that the W_{α} may be regarded as elements of the group SU_3 . Using (3.6) in conjunction with (2.4), we obtain the required results (17) by matrix multiplication. We note only the following (3.7) $$\begin{cases} W_3 Y W_3 = -(I_z + \frac{1}{2}Y), \\ E_{\pm 2} W_2 = W_2 E_{\pm 1}, \\ E_{\pm 3} W_3 = W_3 E_{\mp 1}. \end{cases}$$ In view of the close relationship of W_1 to the charge symmetry transformation, invariance under W_1 will not yield new results. Accordingly, we confine Fig. 1. – The weight diagram for the IR (1.1) of A_2 . We use a scale wherein the Y unit bears the ratio $\sqrt{3}/2$ to the ν unit. A single circle at a point (ν, Y) signifies that the weight (ν, Y) is simple; a double circle that it has multiplicity two, etc. attention to W2 and W3. As is obvious from our previous remarks and already well. known (10), we may, by inspection of the weight diagram, immediately determine the effect of W_2 and W_3 on a basis vector $|I\nu Y\rangle$ of any IR (λ, μ) which belongs to a simple weight, at least up to a sign whose presence or absence is irrelevant in most of the physical applications envisaged in refs. (8-10). For basis vectors $|IvY\rangle$ which belong to nonsimple weights, we cannot proceed so directly; it is really for the treatment of such basis vectors that the present work has been undertaken. We illustrate our method first for the case of the IR (1, 1) of A_2 and then for a more complicated case, the IR (2, 2). We consider first the case of the eight-component IR (1,1) of A_2 , whose weight diagram is displayed in Fig. 1. For the effect of W on the basis vectors of (1, 1) which belong to simple weights, we obtain the results (3.8) $$W_2|1 -1 0\rangle = |\frac{1}{2} -\frac{1}{2} -1\rangle,$$ $$(3.9) W_2|_{\frac{1}{2}} \frac{1}{2} -1\rangle = -|_{\frac{1}{2}} -\frac{1}{2} 1\rangle,$$ $$(3.10) W_2 | 1 1 0 \rangle = -|\frac{1}{2} \frac{1}{2} 1 \rangle$$ by inspection of Fig. 1 (except for the signs). The sign of (3.8) is arbitrarily ⁽¹⁷⁾ We could also have obtained the commutation relations of the W_1 , W_2 , W_3 with the elements of A_2 , without reference to the fundamental IR (1,0) of A_2 or any other, by an argument involving the behaviour of the roots (3) of A_2 under the Weyl reflections. selected and then those in (3.9) and (3.10) follow uniquely, e.g. according to $$W_2|_{\frac{1}{2}} \xrightarrow{\frac{1}{2}} -1 \rangle \sim W_2 I_+|_{\frac{1}{2}} -\frac{1}{2} -1 \rangle$$ by (2.13), $\sim E_2 W_2|_{\frac{1}{2}} -\frac{1}{2} -1 \rangle$ by (3.7), $\sim E_2|_{1} -1 0 \rangle$ by (3.8), $= -|_{\frac{1}{2}} -\frac{1}{2} 1 \rangle$ by (2.15), the symbol \sim indicating the ommission of some positive numerical factor. The next stage involves the weight (0,0) to which belong the basis vectors $|1\ 0\ 0\rangle$ and $|0\ 0\ 0\rangle$. Here as in all such situations, we begin with the basis vector with the highest *I*-value and develop $$(3.11) \begin{cases} W_2|1 & 0 > = \sqrt{\frac{1}{2}} W_2 I_+ |1 - 1 & 0 >, \\ & = \sqrt{3} E_2 W_2 |1 - 1 & 0 >, \\ & = \sqrt{3} E_2 |\frac{1}{2} - \frac{1}{2} - 1 >, \\ & = \frac{1}{2}|1 & 0 & 0 > -\frac{\sqrt{3}}{2}|0 & 0 & 0 >, \end{cases}$$ using eq.s (2.13), (3.7), (3.8), (2.14) and (2.15). Since $W_2^2 = 1$, we get from (3.11) the remaining result (3.12) $$W_2 |0 \ 0 \ 0 \rangle = -\frac{\sqrt{3}}{2} |1 \ 0 \ 0 \rangle - \frac{1}{2} |0 \ 0 \ 0 \rangle.$$ As a check on consistency we may derive (3.11) via an alternative route $$W_2|1\ 0\ 0\rangle = \sqrt{\frac{1}{2}}W_2I_-|1\ 1\ 0\rangle = -\sqrt{3}E_{-2}|\frac{1}{2}|\frac{1}{2}|1\rangle.$$ The treatment of W_3 proceeds similarly using the last line of (3.7) and the matrix elements of $E_{\pm 3}$. The results are (3.13) $$\begin{cases} W_{3}|1 & 1 & 0 \rangle = |\frac{1}{2} & \frac{1}{2} & -1 \rangle, \\ W_{3}|\frac{1}{2} & \frac{1}{2} & 1 \rangle = |\frac{1}{2} & -\frac{1}{2} & -1 \rangle, \\ W_{3}|1 - 1 & 0 \rangle = |\frac{1}{2} & -\frac{1}{2} & 1 \rangle, \\ W_{3}\begin{bmatrix} |1 & 0 & 0 \rangle \\ |0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} |1 & 0 & 0 \rangle \\ |0 & 0 & 0 \rangle \end{bmatrix}.$$ The method previously applied (8.9) to the IR (1, 1) proceeds in two stages. In the first stage the basis vectors of (1, 1) are explicitly constructed in terms of products of basis vectors φ_{α} of the IR (1, 0) and basis vectors (18) $\tilde{\varphi}_{\alpha}$ of the IR (0, 1). In the second, explicit performance of the substitutions indicated by (3.6) is carried out for the basis vectors so constructed. In view of many different sign conventions used in the literature in the construction of a basis for the IR (1, 1) in terms of φ_{α} , $\tilde{\varphi}_{\alpha}$ we append a construction consistent with eqs. (3.8)–(3.13): $$(3.14) \begin{cases} |1 & 1 & 0\rangle = -\varphi_1 \tilde{\varphi}_2 , \\ |1 & 0 & 0\rangle = \sqrt{\frac{1}{2}} (\varphi_1 \tilde{\varphi}_1 - \varphi_2 \tilde{\varphi}_2) , \\ |1 - 1 & 0\rangle = \varphi_2 \tilde{\varphi}_1 , \\ |\frac{1}{2} & \frac{1}{2} & 1\rangle = \varphi_1 \tilde{\varphi}_3 , \\ |\frac{1}{2} - \frac{1}{2} & 1\rangle = \varphi_2 \tilde{\varphi}_3 , \\ |\frac{1}{2} & \frac{1}{2} - 1\rangle = -\varphi_3 \tilde{\varphi}_2 , \\ |\frac{1}{2} & -\frac{1}{2} - 1\rangle = \varphi_3 \tilde{\varphi}_1 , \\ |0 & 0 & 0\rangle = \sqrt{\frac{7}{6}} (-\varphi_1 \tilde{\varphi}_1 - \varphi_2 \tilde{\varphi}_2 + 2\varphi_3 \tilde{\varphi}_3) . \end{cases}$$ The 27-component IR (2, 2) of A_2 has the weight diagram shown in Fig. 2. For those of the basis vectors of (2.2) which belong to simple weights, we obtain Fig. 2. - The weight diagram for the IR (2, 2) of A_2 . ⁽¹⁸⁾ We use a bar to denote complex conjugation, since the more usual star has come to denote a resonance. [855] WEYL REFLECTIONS IN THE UNITARY SYMMETRY THEORY OF STRONG INTERACTIONS the effect of W_2 , by inspection of Fig. 1, in the form $$(3.15) W_2 | 1 1 2 \rangle = | 2 2 0 \rangle,$$ $$(3.16) W_2 | 1 0 2 \rangle = | \frac{3}{2} \frac{3}{2} - 1 \rangle,$$ $$(3.17) W_2|1-1 2\rangle = |1 1-2\rangle.$$ $$(3.18) W_2|_{\frac{3}{2}} \frac{3}{2} 1\rangle = |_{\frac{3}{2}} \frac{3}{2} 1\rangle,$$ $$(3.19) W_2|_{\frac{3}{2}} - \frac{3}{2} 1\rangle = -|1 0 - 2\rangle,$$ $$(3.20) W_2|2-2 0\rangle = |1-1-2\rangle,$$ $$(3.21) W_2|_{\frac{3}{2}} - \frac{3}{2} - 1\rangle = |_{\frac{3}{2}} - \frac{3}{3} - 1\rangle,$$ wherein the first sign has been chosen positive arbitrarily and all that follow are fixed, as in (3.9). We next consider the double weights (-1,0) and $(-\frac{1}{2},-1)$, whose associated basis vectors are seen from Fig. 2 to mix under W_2 . As before, we start out from the basic vectors with higher I and, as before, we obtain $$\begin{split} W_2|2-1 & 0\rangle = \sqrt{\frac{1}{6}}|\frac{3}{2} - \frac{1}{2} - 1\rangle - \sqrt{\frac{5}{6}}|\frac{1}{2} - \frac{1}{2} - 1\rangle \,, \\ W_2|\frac{3}{2} - \frac{1}{2} - 1\rangle = \sqrt{\frac{1}{6}}|2-1 & 0\rangle - \sqrt{\frac{5}{6}}|1-1 & 0\rangle \,. \end{split}$$ Since $W_2^2=1$, the effect of W_2 on $|1-1|0\rangle$ and $|\frac{1}{2}-\frac{1}{2}-1\rangle$ follows. We summarize the four results in the involutory matrix equation $$(3.22) W_2 \begin{vmatrix} |2-1 & 0\rangle \\ |1-1 & 0\rangle \end{vmatrix} = \begin{vmatrix} \sqrt{\frac{1}{6}} & -\sqrt{\frac{5}{6}} \\ -\sqrt{\frac{5}{6}} & -\sqrt{\frac{1}{6}} \end{vmatrix} \begin{bmatrix} |\frac{3}{2} - \frac{1}{2} - 1\rangle \\ |\frac{1}{2} - \frac{1}{2} - 1\rangle \end{vmatrix}.$$ Likewise for other pairs of double weights, we have the involutory matrix equations $$(3.23) \hspace{1cm} W_{2} \begin{bmatrix} \left| \frac{3}{2} - \frac{1}{2} \ 1 \right\rangle \\ \left| \frac{1}{2} - \frac{1}{2} \ 1 \right\rangle \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \left| \frac{3}{2} & \frac{1}{2} - 1 \right\rangle \\ \left| \frac{1}{2} & \frac{1}{2} - 1 \right\rangle \end{bmatrix},$$ $$(3.24) \qquad W_2 \begin{bmatrix} |2 & 1 & 0 \rangle \\ |1 & 1 & 0 \rangle \end{bmatrix} = \begin{bmatrix} -\sqrt{\frac{1}{6}} & \sqrt{\frac{5}{6}} \\ \sqrt{\frac{5}{6}} & \sqrt{\frac{1}{6}} \end{bmatrix} \begin{bmatrix} |\frac{3}{2} & \frac{1}{2} & 1 \rangle \\ |\frac{1}{2} & \frac{1}{2} & 1 \rangle \end{bmatrix}.$$ Now there remains only to find out how the three basis vectors that belong to the weight (0,0) mix under W_2 . We develop $$\begin{split} W_2|2\ 0\ 0\rangle &= \sqrt{\tfrac{1}{6}}\,W_2I_+|2\ -1\ 0\rangle\,,\\ &= E_2\{\sqrt{\tfrac{1}{6}}|\tfrac{3}{2}-\tfrac{1}{2}-1\rangle - \sqrt{\tfrac{5}{6}}|\tfrac{1}{2}-\tfrac{1}{2}-1\rangle\}\,,\\ &= \frac{1}{6}|2\ 0\ 0\rangle - \frac{\sqrt{15}}{6}|1\ 0\ 0\rangle + \frac{\sqrt{5}}{3}|0\ 0\ 0\rangle\,, \end{split}$$ and $$\begin{split} W_2 |1 & 0 & 0 \rangle = \sqrt{\frac{1}{2}} W_2 I_+ |1 - 1 & 0 \rangle \,, \\ &= \sqrt{3} \, E_2 \{ -\sqrt{\frac{5}{6}} |\frac{3}{2} - \frac{1}{2} - 1 \rangle - \sqrt{\frac{1}{6}} |\frac{1}{2} - \frac{1}{2} - 1 \rangle \} \,, \\ &= -\frac{\sqrt{15}}{6} |2 & 0 & 0 \rangle + \frac{1}{2} |1 & 0 & 0 \rangle + \frac{\sqrt{3}}{3} |0 & 0 & 0 \rangle \,, \end{split}$$ with the aid of (3.22) and other equations. Using $W_2^2 = 1$, we can evaluate $W \mid 0 \mid 0 \mid 0$ and hence complete the involutory matrix equation $$(3.25) \qquad W_{2} \begin{bmatrix} |2\ 0\ 0\rangle \\ |1\ 0\ 0\rangle \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & -\frac{\sqrt{15}}{6} & \frac{\sqrt{5}}{3} \\ -\frac{\sqrt{15}}{6} & \frac{1}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{5}}{3} & \frac{\sqrt{3}}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} |2\ 0\ 0\rangle \\ |1\ 0\ 0\rangle \end{bmatrix}.$$ The treatment of W_3 follows the same pattern and yields the following results $$\begin{cases} W_{3}|1-1|2\rangle &= |2-2|0\rangle, & W_{3}|1-0|2\rangle = |\frac{3}{2}-\frac{3}{2}-1\rangle, \\ W_{3}|1-1|2\rangle &= |1-1-2\rangle, & W_{3}|\frac{3}{2}-\frac{3}{2}|1\rangle = |1-0|2\rangle, \\ W_{3}|2-2|0\rangle &= |1-1-2\rangle, & W_{3}|\frac{3}{2}-\frac{3}{2}|1\rangle = |\frac{3}{2}-\frac{3}{2}-1\rangle, \\ W_{3}|\frac{3}{2}-\frac{3}{2}-1\rangle &= |\frac{3}{2}-\frac{3}{2}-1\rangle, \\ W_{3}\left|\frac{3}{2}-\frac{1}{2}-1\rangle\right| &= \left[\frac{2}{3}-\frac{\sqrt{5}}{3}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ W_{3}\left[\frac{2-1}{2}-1\rangle\right] &= \left[\frac{\sqrt{1}}{3}-\frac{\sqrt{5}}{3}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ W_{3}\left[\frac{2-1}{1}-0\rangle\right] &= \left[\frac{\sqrt{1}}{6}-\frac{\sqrt{5}}{6}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ W_{3}\left[\frac{2}{1}-0\rangle\right] &= \left[\frac{\sqrt{1}}{6}-\frac{\sqrt{5}}{6}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ W_{3}\left[\frac{2}{1}-0\rangle\right] &= \left[\frac{\sqrt{1}}{6}-\frac{\sqrt{5}}{6}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ \left[\frac{2}{1}-0\rangle\right] &= \left[\frac{\sqrt{1}}{6}-\frac{\sqrt{1}}{6}\right] \left[\frac{3}{2}-\frac{1}{2}-1\rangle\right], \\ \left[\frac{1}{2}-0\rangle\right] &= \left[\frac{1}{6}-\frac{\sqrt{15}}{6}-\frac{\sqrt{5}}{3}\right] \left[\frac{2}{1}-0\rangle\right], \\ \left[\frac{1}{2}-0\rangle\right] &= \left[\frac{1}{6}-\frac{\sqrt{15}}{6}-\frac{\sqrt{3}}{3}\right] \left[\frac{1}{2}-0\rangle\right], \\ \left[\frac{1}{2}-0\rangle\right] &= \left[\frac{1}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{3}-\frac{1}{3}\right] \left[\frac{1}{2}-0\rangle\right]. \\ \left[\frac{1}{2}-0\rangle\right] &= \left[\frac{1}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{3}-\frac{1}{3}\right] \left[\frac{1}{2}-0\rangle\right].$$ It is surely clear that we can handle any IR of A_2 in this way, treating weights in increasing order of multiplicity and basis vectors belonging to any weight in decreasing order of I-value. Also it can be seen that treatment of the IR (2, 2) of A_2 by a method involv- ing a suitable generalization of (3.14) involves a great amount of arithmetical effort. The thirty-five-component IR (4, 1) of A_2 has the weight diagram shown in Fig. 3. The effect of W_2 and W_3 on its basis vectors is given by the following set of equations. Fig. 3. – The weight diagram for the IR (4, 1) of A_2 . $$\begin{cases} W_{2}|2 & 2 \geq 2 = |\frac{5}{2} & \frac{5}{2} & 1 \rangle, & W_{2}|2 & 1 & 2 \rangle = |2 & 2 & 0 \rangle, \\ W_{2}|2 & 0 & 2 \rangle & = |\frac{3}{2} & \frac{3}{2} - 1 \rangle, & W_{2}|2 - 1 & 2 \rangle & = |1 & 1 - 2 \rangle, \\ W_{2}|2 - 2 & 2 \rangle & = |\frac{1}{2} & \frac{1}{2} - 3 \rangle, & W_{2}|\frac{5}{2} - \frac{5}{2} & 1 \rangle = -|\frac{1}{2} - \frac{1}{2} - 3 \rangle, \\ W_{2}|2 - 2 & 0 \rangle & = -|1 - 1 - 2 \rangle, & W_{2}|\frac{3}{2} - \frac{3}{2} - 1 \rangle = -|\frac{3}{2} - \frac{3}{2} - 1 \rangle, \\ W_{2}\begin{vmatrix} \left|\frac{5}{2} & \frac{3}{2} & 1\right\rangle \\ \left|\frac{3}{2} & \frac{3}{2} & 1\right\rangle \end{vmatrix} & = \begin{vmatrix} -\frac{1}{5} & \frac{\sqrt{24}}{5} \\ \frac{\sqrt{24}}{5} & \frac{1}{5} \end{vmatrix} \begin{vmatrix} \left|\frac{5}{2} & \frac{3}{2} & 1\right\rangle \\ \left|\frac{3}{2} & \frac{3}{2} & 1\right\rangle \end{vmatrix}, \\ W_{2}\begin{vmatrix} \left|\frac{5}{2} & \frac{1}{2} & 1\right\rangle \\ \left|\frac{3}{2} & \frac{1}{2} & 1\right\rangle \end{vmatrix} & = \begin{vmatrix} -\sqrt{\frac{1}{5}} & \sqrt{\frac{9}{5}} \\ \sqrt{\frac{9}{5}} & \sqrt{\frac{1}{6}} \end{vmatrix} \begin{vmatrix} \left|\frac{1}{2} & 1 & 0\right\rangle \\ \left|\frac{1}{2} & \frac{1}{2} & 1\right\rangle \end{vmatrix} = \begin{vmatrix} -\sqrt{\frac{7}{5}} & \sqrt{\frac{9}{5}} \\ \sqrt{\frac{7}{5}} & \sqrt{\frac{1}{6}} \end{vmatrix} \begin{vmatrix} \left|\frac{3}{2} & \frac{1}{2} - 1\right\rangle \\ \left|\frac{1}{2} & \frac{1}{2} - 1\right\rangle \end{vmatrix}, \\ W_{2}\begin{vmatrix} \left|\frac{5}{2} - \frac{3}{2} & 1\right\rangle \\ \left|\frac{3}{2} - \frac{3}{2} & 1\right\rangle \end{vmatrix} & = \begin{vmatrix} -\sqrt{\frac{7}{5}} & \sqrt{\frac{9}{5}} \\ \sqrt{\frac{3}{5}} & \sqrt{\frac{9}{5}} \end{vmatrix} \begin{vmatrix} \left|1 & 0 - 2\right\rangle \\ \left|0 & 0 - 2\right\rangle \end{vmatrix}, \\ W_{2}\begin{vmatrix} \left|2 & 0 & 0\right\rangle \\ \left|1 & 0 & 0\right\rangle \end{vmatrix} & = \begin{vmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \sqrt{\frac{3}{5}} & \frac{1}{2} \end{vmatrix} \begin{vmatrix} \left|2 & 0 & 0\right\rangle \\ \left|1 & 0 & 0\right\rangle \end{vmatrix}, \\ W_{2}\begin{vmatrix} \left|2 - 1 & 0\right\rangle \\ \left|1 - 1 & 0\right\rangle \end{vmatrix} & = \begin{vmatrix} -\sqrt{\frac{7}{2}} & \sqrt{\frac{7}{2}} \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{vmatrix} \begin{vmatrix} \left|\frac{3}{2} - \frac{1}{2} - 1\right\rangle \\ \left|\frac{1}{2} - \frac{1}{2} - 1\right\rangle \end{vmatrix}.$$ $$\begin{cases} W_{3}|2-2|2\rangle = |\frac{5}{2}-\frac{5}{2}-1\rangle, & W_{3}|2-1-2\rangle = |2-2-0\rangle \\ W_{3}|2-0|2\rangle = |\frac{3}{2}-\frac{3}{2}-1\rangle, & W_{3}|2-1-2\rangle = |1-1-2\rangle \\ W_{3}|2-2|2\rangle = |\frac{1}{2}-\frac{1}{2}-3\rangle, & W_{3}|\frac{5}{2}-\frac{5}{2}-1\rangle = |\frac{1}{2}-\frac{1}{2}-3\rangle \\ W_{3}|2-2|0\rangle = |1-1-2\rangle, & W_{3}|\frac{3}{2}-\frac{3}{2}-1\rangle = |\frac{3}{2}-\frac{3}{2}-1\rangle \\ W_{3}\begin{bmatrix} |\frac{5}{2}-\frac{3}{2}-1\rangle \\ |\frac{3}{2}-\frac{3}{2}-1\rangle \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{5}{5}} & \sqrt{\frac{3}{5}} \\ \sqrt{\frac{3}{5}} & -\sqrt{\frac{5}{5}} \end{bmatrix} \begin{bmatrix} |1-0-2\rangle \\ |0-0-2\rangle \end{bmatrix}, \\ W_{3}\begin{bmatrix} |\frac{5}{2}-\frac{1}{2}-1\rangle \\ |\frac{3}{2}-\frac{1}{2}-1\rangle \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{1}{10}} & \sqrt{\frac{5}{10}} \\ \sqrt{\frac{3}{5}} & -\sqrt{\frac{1}{5}} \end{bmatrix} \begin{bmatrix} \frac{3}{2}-\frac{1}{2}-1\rangle \\ \frac{1}{2}-\frac{1}{2}-1\rangle \end{bmatrix}, \\ W_{3}\begin{bmatrix} |\frac{5}{2}-\frac{1}{2}-1\rangle \\ |\frac{3}{2}-\frac{1}{2}-1\rangle \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{1}{10}} & \sqrt{\frac{5}{10}} \\ \sqrt{\frac{5}{10}} & -\sqrt{\frac{1}{10}} \end{bmatrix} \begin{bmatrix} |2-10\rangle \\ |2-10\rangle \end{bmatrix}, \\ W_{3}\begin{bmatrix} |\frac{5}{2}-\frac{3}{2}-1\rangle \\ |\frac{3}{2}-\frac{3}{2}-1\rangle \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{\sqrt{24}}{5} \\ \sqrt{\frac{1}{24}} & -\sqrt{\frac{1}{5}} \end{bmatrix} \begin{bmatrix} \frac{5}{2}-\frac{3}{2}-1 \\ \frac{3}{2}-\frac{3}{2}-1 \end{bmatrix}, \\ W_{3}\begin{bmatrix} |2-10\rangle \\ |1-10\rangle \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{2}-1\rangle \\ |\frac{3}{2} & \frac{1}{2}-1\rangle \end{bmatrix}, \\ W_{3}\begin{bmatrix} |2-0\rangle \\ |1-0\rangle \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} |2-0\rangle \\ |1-0\rangle \end{bmatrix}. \end{cases}$$ #### RIASSUNTO (*) Lavori recenti hanno chiaramente dimostrato che dallo studio dell'invarianza rispetto alle riflessioni di Weyl (operazioni di simmetria di carica generalizzata) di SU_3 seguono utili predizioni nella teoria della simmetria unitaria di Ne'eman, Gell-Mann delle interazioni forti. Qui si descrive un metodo algebrico generale abbastanza rapido per ottenere l'effetto delle riflessioni di Weyl sui vettori basilari di una rappresentazione irriducibile (IR) arbitraria di SU_3 . Una caratteristica importante del metodo è che esso si applica a quei vettori basilari dell'IR, che appartengono ai pesi non semplici dell'IR e che quindi non possono essere trattati con l'ispezione del diagramma dei pesi dell'IR. Si dànno i risultati per alcune IR di SU_3 importanti nella teoria di Ne'eman e Gell-Mann — gli IR a 8, 27 e 35 componenti (1.1), (2.2) e (4.1) di SU_3 . ^(*) Traduzione a cura della Redazione.