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about the behaviour of the leading trajectory for 
small values of X or/and high values of s is that 
it has the form of (13) with some x0. 

Comparing the value of I obtained from eq. (9) 
and (13) we are faced with a striking difference 
between the behaviour of the trajectory for X + -0 
and)c - +O. It means that the solution of the in- 
tegral eq. (4) has a singularity in X at h = 0,’ 
namely the bound state trajectory has a jump in X. 

Physically it is a sensible result, because the 
two cases are quite different in nature: if X + -0 
then the diagrams corresponding to the kernel con- 
tain a ghost state singularity in contrast to the 
case h -+ +O. 

If we compare the behaviour of the trajectory 
given by eq. (13) with trajectories given by a 
Yukawa potential 5) or by a gcp 3 type theory l) it 
may be seen that our trajectory has a much 
weaker dependence on s. It is possible, that it 
can explain the experimental situation in elastic 
scattering, where the observed limit for the 
shrinkage of the diffractional peak is much smaller 
than the value predicted by the aforementioned 
theories 1,5). 

Finally we remark the following: we substituted 
the simple one bubble kernel of ref. 2, by a 
more involved kernel which contains them and we 
obtained that the asymptotic behaviour of the am- 
plitude in the crossed channel is determined by 
one leading Regge pole, unlike the result in 
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ref. 2, where there was a leading branch point. 
One can think about the possibility of building up 
the exact scattering amplitude in steps in which 
we have always Fredholm type kernels resulting 
in a solution with a leading pole. 

After completing this work we noticed the papel 
of Pat 6) about the same problem. We remark, 
however, that in this paper the use of the asymp- 
totic form of Ql is not allowed, because as we 
noticed the main contribution to Det [ 1 - $(1/F)] 
comes from the integration over the region, 
where the argument of &I may be near unity. 

The authors are much indebted to Dr. G. 
Domokos for valuable discussions. 
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Recently Cutkosky has presented a model of 
N vector mesons interacting amongst themselves 
in such a manner that each vector meson may be 
considered as a bound state of pairs of vector 
mesons. He then proceeds to show that N must 
be equal to the dimension of some Lie algebra 
tid that the (renormalized) coupling constants 
must be proportional to the structure constants 
of the group. Amongst the postulates involved is 
the conservation of electric charge (or, more 
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generally, any additive quantum number which is 
not the same for all members of the multiplet). 
Cutkosky raised the possibility that this postulate 
may be redundant, but left the question open. It 
is the purpose of this note to present a discussion 
of the model, very similar to the work of Cutkos- 
ky, in which the charge conservation need to be 
explicitly imposed, but may be derived as a con- 
sequence. 

We follow Cutkosky and consider only such 
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trilinear vertices for which the effective interac- 
tion may be written in the form 

where u is some function of the momenta and 
Fabc is antisymmetric under the interchange of 
any two of its labels. We use hermitian vector 
fields so that Fabc is purely imaginary. Accord- 
ing to the model, the wavefunction of the particle 
r considered as being composed of the two par- 
ticles, a, b may be written in the form 

qt; (g) = Fabr ‘k(x) - 

The orthonormal property of the wavefunctions 
q(r) yields 

F 
* 
abr Fabs = [JV&)I 2d3x]-1 brz 

By choosing J/(g) to be normalized and remember- 
ing the properties of Fabc we have 

F abr Fabs = - %s * (1) 

The one-meson exchange potential may be written 
in the form 

V ab, cd = (Fadr Fbcr - Facr‘ Fbdr) ” = Mab, cd ” 9 

(2) where the dependence of V&, cd on the momen- 
ta is solely contained in the momentum depen- 
dence of the function v. 

Given the potential (2) we can proceed to com- 
pute the scattering amplitude T. The result of 
such a computation can be written in the form of 
a matrix powerseries in the matrix M with coef- 
ficients which are functions of momenta in the 
form 

Tab, cd = al Mab, cd + a2 Mab, cy Mxy cd + ‘* * * 

or, more succinctly, 

T= ~la,Mu. (3) 

The precise dependence of the coefficient func- 
tions a, on the momenta would involve the specific 
form of v as well as on the cutoff used. We now 
observe that self consistency demands that the 
amplitude T must exhibit N poles corresponding 
to the N vector meson bound states. It must then 
have the form 

Tab, cd = Fabr Fdcr r +Cab, cd 9 
where Cab, cd COrW%3pOlIdS t0 the COnt.iIltium con- 

tributions and T has the standard dependence on 
the momenta for one-particle exchanges. Since 
we have already neglected the possible contribu- 
tions from such two-particle exchanges in com- 
puting the potential (2), for consistency we must 
neglect them here also. We are thus led to the 
(approximate) form 

Tab, cd = Fabr Fdcr r - (4) 

Such a scattering amplitude satisfies the relation 

T2=.T. (5) 

We now wish to find the condition under which the 
matrix power series (3) for T can satisfy this re- 
lation. 

A sufficient condition for this to be satisfied 
is to have M satisfy the relation 

M2 =mM. (6) 

From the relation 

we cannot immediately conclude that M must 
satisfy the relation (6). If we consider the sum- 
mation over v to be restricted to be over a finite 
set, say 1 c v C n, then M need satisfy only a 
characteristic equation of degree 2n and may, in 
general, have 2n distinct roots rather than the 
two roots implied by (6). Now zero is always an 
eigenvalue but the other eigenvalues are in gen- 
eral dependent on the momenta since the coef- 
ficients a, are functions of the momenta. But this 
cannot be, since M is a numerical matrix. It thus 
appears very plausible that the relation (6) is also 
a necessary condition; it, of course, implies 
that T can be expressed in terms of the coeffi- 
cient functions a,. 

But if (6) is satisfied it follows that T has the 
same ab, cd dependence as M so that we may 
write, 

n Fabr Fdcr = Mab, cd = Fadr Fbcr - Facr Fbdr* 
Since this relation must hold for all abed, we get 
by cycle permutation of abc and addition 

(II + 2XFadr Fhr + Fbdr Fc- + Fcb Fabr) = 6 * 

Since p is a function of momenta it follows that 

F adr Fbcr + Fbdr Fear + Fcdr Fabr = o - 0) 
This relation together with the antisymmetry of 
the Fat in its indices shows that Fat are the 
structure constants of a Lie algebra. This is 
Cutkosky’s result l). 

It is important to note that while this derivation 
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is very similar to the one given by Cutkosky it Reference 
does not make use of electric charge conserva- 1) R.E .Cutkosky, Phys.Rev.131 (1963) 1888 ; 
tion ; but once the Jacobi identity 0) is demon- Proc.Seminar on Unified Theories of Elementary 
&rated, we may choose a maximal commuting Particles, e&D. Lurie and N. Mukunda, University 

set of generators of the Lie algebra to define the 
of Rochester Report URPA 11 (1963). 

conserved charges (additive quantum numbers). 
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