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where

n n
p2 = L:; p; ; q2 = L:; q; ; Z = charge, ,"",

r=l r=l

has the angular momentum invariance group O(n) with generator

qrPs- qsPr .-,

and the higher invariance group (Fock-Bargman group) O(n+ 1) with n extra (Lenz) generators
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t The exact origin of the knowledge that 0(4,1) is relevant is unknown to us .

~~

~

~~

The recent success of SU(6) symmetry in classifying elementary particles has triggered off a re-
newed interest in groups which are not invariance groups of dynamical systems but may yet be useful
for characterizing the systems [1-3], (By a group which is not an invariance group we mean one whose
elements do not all commute with the Hamiltonian of the system.) One dynamical system which has been
the focus of this renewed interest is the non-relativistic hydrogen atom, whose higher invariance group
° (4) is well-known, and lor which a relevant non-invariant group, the De Sitter group ° (4, 1) is also
known t. In fact, in ref. 5, expressions for the generators of 0(4,1) in terms of the (classical) primi-
tive dynamical variables have already been obtained explicitly.

The purpose of the present note is to investigate further the problem of the hydrogen atom from a
group theoretical point of view, both in the classical and quantum mechanical cases. First, we inter-
pret the arbitrary function and arbitrary parameter in the results of ref. 5. It turns out that the inter-
pretation of the arbitrary parameter is non-trivial and leads to an important property of the group
0(4,1), namely that for arbitrary v we can place the lowest v levels of the atom in a representation of the
corresponding compact group 0(5) and the remaining levels in a representation of 0(4,1), the matrix ele-
ments for the representation of the two groups being simple analytic continuations of one another. A sec-
ond result we find is that there exists, besides 0(4,1), a second non-invariance group, namely SL(4, R),
with similar properties, the difference being that whereas 0(4,1) classifies all energy levels, SL(4, R)
classifies the even-numbered and odd-numbered levels separately, in Regge fashion. However, apart
from 0(4,1) and SL(4, R), there are (in a sense to be explained) no other non-invariance groups. We find
in addition that all our results generalize immediately to the case of the hydrogen atom in n dimen-
sions. Finally, the positive and zero energy states, as well as the bound states, are investigated.

We now discuss these results more quantitatively. Letting Pr and qr, 1 ~ r ~ n be the primitive
dynamical variables in n dimensions, the hydrogen atom Hamiltonian

H = }b2 -Z/ a. {1)

~

(2)

(3)

~
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1
Ah= (-2H)-2{Z(q.P)Pk + (Z/q_p2)qk} (4)l~k~n

where

n
q .p = L:; qrPr

r=l

It is understood that in the quantum mechanical case, the quantities occurring in eqs. (3) and (4) are to
be appropriately symmetrized.

For positive energy it is clear from eq. (4) that the compact invariance group O(n+ 1) changes to the
non-compact form O(n, 1). For zero energy Ak Is undefined, but if one uses instead irk = F21l Ak and
then goes to the limit, one sees at once that the invariance group becomes En, the Euclidean group in
n dimensions. From eq. (4) it is also clear that in the limiting case Z = 0, of a free particle, En is the
relevant symmetry group.

For the negative energy case, the states of the vth-energy level furnish the symmetric tensor re-
presentation of rank II of O(n+ 1). With respect to the angular momentum group O(n), this decomposes
into a direct sum of symmetric tensor representations of rank Jl = 0,1, ...,II, each one occurring once.
The energy itself is given by

H = -~{A2 + L2 + 1<n-l)2}-1 (5)

wher.

A2 + L2 = AkAk+ tLjkLjk

is the Casimir operator of O(n+ 1).
We can now go further and organize the lowest v levels into a symmetric tensor representation of the

non- invariance group O(n + 2) , the remaining infinite number of levels constituting an irreducible unitary
representation of the non-compact (generalized De Sitter) group O(n + 1,1).

In order to compute the extra generators needed to form the non- invariance groups O(n + 2) and
O(n+ 1,1), we follow Bacry [5] and restrict ourselves to the classical problem, using Poisson brackets
instead of commutators. In the classical case, the non-invariance group transforms orbits with one
energy into orbits with a different energy , while the invariance group generates transformations be-
tween orbits of the same energy .The explicit form of the generators are obtained by solving the dif-
ferential equations entailed by the Poisson brackets. There are n+ 1 such generators and they transform
like an (n+ 1) vector with respect to O(n+ 1), and an n-vector Bk, k = 1, ..., n, and a scalar S with re-
spect to the angular momentum group O(n). The general expressions for these vectors turn out to be

S = -.I A -1/2H { (q .p) J-::2j[ sin 1/1 + (qp2 -1) cos 1/1} , (6)

(7)Bk = JA- 112H{[q.f=2H cas 1/1- (q .p) sin 1/1] Pk+ (11 q)cas 1/1 qw ,

where

1/1 = {(q .p).r::-'J;Ij + e(Jl)} (8)

and, for simplicity, we normalize Z to 1, since we are interested only in the case Z * 0. The solution
thus depends on one arbitrary parameter A and an arbitrary function e(Jl). We can see, however, that
the a;rbitrary function e (Jl) simply corresponds to the freedom to make a canonical transformation of
the generators Bk and S by an arbitrary function of the Hamiltonian without altering the defining Poisson
brac;ket relations; such a transformation would leave the generators of the invariance group O(n + 1) un-
altered.

The parameter A is an essential parameter. For the negative energy orbits, for A positive, the ex-
pression A- 1/2H is always positive. The O(n+ 1,1) transformations thus generate transformations be-
tween all the closed orbits; distinct positive values of A correspond to inequivalent irreducible realiza-
tions of the transformation group. If we choose A to be negative, the O(n+ 1,1) group is realized by the
orbits with binding energy less than 1/2A (which is the binding energy of a circular orbit with radius
-A). For orbits with larger binding energy, the generators Bk and S become pure imaginary. We could
define a group O(n+ 2) by choosing Bk = iBk and S' = iS as the additional generators; and then the O(n + 2)
group would be realized irreducibly by transformations amongst these orbits.
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Returining to the quantum mechanical case, we find that we have a similar situation, which we shall
illustrate explicitly for n = 3, although it is true for all n. For n = 3 the Fock-Bargman invariance
group is the group 0(4), and the states of the vth energy level furnish the symmetric tensor represen-
tation of rank v of this group. Following the clue provided by the essential parameter A in the classical
case, we look for an irreducible unitary representation of the non-invariance group 0(5) which will con-
tain each of the states of the lowest v energy levels of the atom just once (for arbitrary v). It turns out
that the symmetric tensor representation of rank vof 0(5) has the required property. The problem of
constructing this irreducible unitary representation of 0(5) explicitly clearly reduces to the problem of
evaluating the reduced matrix elements of the extra generators Bk and S, k = 1,2,3 of 0(5), between the
symmetric tensor states of 0(4) .That is to say, if we let the states of each ener~ level (representation
of 0(4» be labelled * as \jjml m2), and define the reduced matrix element (j' IIBlIj) by

!. !. .!. "' " !. "'
(j'j'm'm' IB 2 21jjm m ) = CJ2J , CJ2J I (j'11 Bi\j) , (9)

I 2 J.L1J.L2 I 2 m1J.L1ml ~J.L2m2
1 1

where B~:J.L2 is normalized so that
1 1 1 1

BI2!. -B21!. = 2[54 (10)
2-2 -22

in the conventional notation, (and similarly for S), we find, using the explicit matrix elements of [54
found by Gelfand and Tseitlein [6], that, for j' * j, the only non-zero reduced matrix elements are es-

sentially

(11)

with the restriction 2j ~ lI.
We then consider the remaining energy levels and look for an irreducible unitary representation of

0(4,1) which will contain these. We do not have to look very far because by making the simple tran-

scription

( .. IIB' II .1. I ) - ( .. II'n ll ' 1. 1 ) _'/(2j+1):&-(v+1):& (12))) )+2 )+a )) J.D )+a )+a -V. -(2j:;:1)(2j+2)' ,

where 2j ~ v, we obtain such an irreducible Wlitary representation. In particular for v = -1, we obtain
an irreducible Wlitary representation of 0(4, 1) which contains all the energy levels. Actually, in the
latter case (all the energy levels) there exists even a one-parameter class of irreducible unitary repre-
sentations of 0(4, 1) into which they can be put. The class is obtained by setting v = -1 + iJ.L for any real

J.L in eq. (12).
Note that by the above procedure we not only establish the existence of an irreducible Wlitary repre-

sentation of 0(5) which contains the lowest v energy levels of the atom and one of 0(4, 1) which contains
the rest, but demonstrate that the matrix elements for those two are related by a simple process of
analytic continuation. It might be worth mentioning that a similar property holds for other systems
also [3].

For the (continuous) positive energy spectrum similar results can be obtained. We have already seen
that in this case the Fock-Bargman invariance group is O(n, 1) and is therefore non-compact to begin
with. From eqs. (6) and (7) it is clear that for A negative the non-invariancegroup is O(n, 2). For A
positive, there exists an energy region (H < 1/2A) for which it is O(n, 2) and a region (H > 1/2A) for
which it is O(n+ 1,1). The last mentioned O(n+ 1, 1), however, is not the same O(n+ 1, 1) as in the nega-
tive energy case.

Having discussed the invariance groups O(n + 1) etc. , and their containing non-invariance groups
O(n + 2) and O(n + 1,1) etc., we come to the question as to whether these groups are Wlique.

First let us discuss the invariance group. It turns out that O(n + 1) is not the only group whose gener-
ators can be constructed out of the primitive variables and which contains the angular momentum group

* The general states of an irreducible unitary representation are labelled I j1j2m1 m2) where j1 m1 and j2m2 are the
quantum numbers of the two 0(3) 's in 0(4) = 0(3) X 0(3) .However, for symmetric tensor representations the sec-
ond Casimir operator C2 = EaJjcdJabJcd is zero, with the result that j1 = j2. Hence the present labelling, with
j1 = j2 = j .A further consequence of C2 is that for the containing 0(5) or 0(4,1}, the vector wf = Eabcdf JabJcd is
zero, since it can be generated from W5 = C2. Hence the Casimir operator wfwt of 0(5) or 0(4,1) is zero. Thus
for 0(5) of 0(4,1) also, only one label is necessary for the relevant irreducible unitary representations.
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and commutes with the Hamiltonian. The group SU(n) also has these properties. The extra generators
required to extend O(n) to SU(n) from a second rank traceless symmetric tensor with respect to O(n),
and can easily be constructed from the Lenz vector. For example, if in the 3-dimensional case we de-
note this tensor by Q2m, m = -2, -1.0, 1, 2, we obtain

Q~ = Ai N2) Ai + g,,2) Ji 2 , (13)

wh~re

f[(l+1)(l+2)] = J2(2l+1>
v A{.\ +3) -1(1+3)

.[(J.L +1)2 -(1 + 1)2][(JL + 1)2 -(1 + 2)2] ,

'[A (A +3) -1(1+3)][(J.L+1)2 -(1+1)~ .1.

(J.L + 1)2 -(1 + 2)2

(14)
g[I(I+l)] --(2~+3) + 1

J2 -(21-1)(21+3) J21+ 1 (21+3)

([~(X + 3)- (1- 2)(1 + 1)][<IL + l)z -1z]

I <IL + 1)2 -(1-1)zl

J2 is the total angular momentum, and A is the Lenz vector defined in (4) and A = n -~(1- p(_)n), where
p is the parity operator (-I)J and n is defined by H = -1/2n2. Unlike O(n+ 1), the symmetric tensor rep-
resentations of SU(n) do not contain every state in a given energy level of the atom, but only every state
with even angular momentum (or alternatively every state with odd angular momentum) .In this sense
SU(n) is less comprehensive than O(n+ 1). On the other hand, this property of SU(n) is a consequence of
the fact that, unlike O(n+ 1), it commutes with the parity operator.

For positive energies we have seen that the invariance group O(n + 1) becomes o(n, 1). Similarly one
can verify that for positive energies SU(n) becomes SL(n, R). The unitary irreducible representations
of SL(n, R) obtained by making the analytic continuation

A---+ -i + ia , a real (15)

in (14), contains all the even (or odd) angular momentum states for any given positive value of H.
We turn now to the case of the non-invariance groups. For negative energies the non-invariance

groups used above were O(n+ 2) and O(n+ I, I). It turns out that, just as in the case of the invariance
groups these groups are not unique. The groups SU(n+ I) and SL(n+ I, R) have similar properties. The
properties of SU(n+l) and SL(n+I,R) differ from those of 0(n+2) and O(n+l, I) in two respects how-
ever: I) O(n+ 2) gathers together the lowest II levels of the atom for arbitrary II, whereas, as might be
expected from the discussion of the invariance groups above, SU(n+ I) gathers together only the lowest
II even-numbered (or odd-numbered) levels. 2) For a given 11, there exists an analytic continuation of
the irreducible unitary representation of O(n+ 2) containing the first II levels, which gives an irreducible
unitary representation of O(n+ I, I) containing all t11e remaining levels. But the analytic continuation of
the irreducible unitary representation of SU(n+ I) containing the first II even (or odd) levels yields one of
SL(n+ I, R) which contains all the even (or odd) levels of the atom.

In these two senses the set {SU(n+I), SL(n+I,R)} is less comprehensive than the set {0(n+2),
O(n+ I, I)}. However, in a sense the set {SU(n+ I), SL(n+ I, R)} is more characteristic of the dynamical
system since on account of (b) it demands the existence of all the energy levels that actually occur.

Having discovered a group other than O(n + 2) or O(n + I, I) one might ask next whether any further
grout)s of this kind exist, or whether 0(n+2) and SU(n+l) are in any sense unique. It is easy to prove
that they are unique in the following sense at any rate. o(n + 2) is the only simple group which, for ar-
bitrary 11, can group together the II lowest energy levels of the atom, and SU(n+ I, ) is the only group
which, for arbitrary II can group the II lowest even (or odd) levels. Further, there is no group with an
irreducible unitary representation containing every 3rd, 4th, ...level up to any energy .

The question as to what becomes of SU(n + I) and SL(n + I, R) when the energy becomes positive is
somewhat complicated and will not be discussed here.

In conclusion we might mention that besides asking the question as to whether the groups 0(4),
0(4, I) etc., are unique, one might ask the question: given the group, are the irreducible unitary rep-
resentation of it which we have used unique or are there other ones which are relevant for this problem.
It turns out that for O(n + I) , for example, the symmetric tensor representations are not the only rele-
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vant ones. There exist other representations which contain instead of the angular momentum states in
the range O ~ l ~ v, those in the range J.L ~ l ~ v, for arbitrary J.L and v. The matrix elements of these
irreducible unitary representations can also be analytically continued and yield one of 0(4, 1) which
contains all the states for which l ;". J.L. We shall not exhibit these matrix elements as an analogous set
have been exhibited elsewhere [3]. It is, perhaps, interesting to note that for the other invariance group,
SU(n), no such irreducible unitary representations exist, the symmetric tensor representations are

unique.

The authors wish to thank Drs. T. F. Jordan, M. Y. Ran, J. Kuriyan and J. Nagel for many 'laluable

discussions.r
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