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I. Introduction

In conventional treatments of particle physics one
starts with dynamical systems consisting of a collection
of particles, or of fields associated with particles, and
one attempts to describe the interactions of the particles
A somewhat more modern version invokes self-consistency
to prefer certain combination of particles over others.
In most of these theories, it is difficult to see a natu-
ral role for the multiplet grouping of particles; true,
in most versions if one or more sets of particles fall
into multiplets with common characteristics, it makes it
likely that the other particles also do this. However,
the remarkable observation is that particles do seem to
fall into multiplets which may be identified with irrre-
ducible representations of various Lie groups, though the
groups are by no means invariance groups of the system.

The problems of particle spectra and particle inter-
actions are however interrelated. one must therefore
look for a suitable framework within which groups which
are not invariance groups enter in an essential manner
into the specification of the dynamical system.l In the
application of approximate symmetries to particle physics,
we see that the essential role played by the supermulti-
plets is in the organization of several irreducible
representations of subgroups which are more exact invar-
iance groups. In special dynamie'al models approximate
symmetries can be related to the dynamics of the system;
but in general the model itself is formulated in terms of
entities other than groups.

II. Dynamical Structure and Noninvariance Groups

Given a symmetry group which is an invariance group of
the Hamiltonian one has the result that the states must
~rnish representations of the group. But the specifica-
tion of the irreducible representations which will actually
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occur goes beyond the specification of the group. However
there are some cases when one can specify the spectrum; for
the system of two spins of magnitudes Sl and S2~ interacting
via a rotationally invariant coupling~ the states fall into
f 2S+1)- component multiplets with S ranging from 31 + 3 to
31-321. In such cases the substructure of the dynamic~l

system results in a "spectrum" of representations. Conver-
sely~ a spectrum of representations is the signature of a
dynamical substructure.

On the other hand, it is possible to associate the spec-
trum with a higher group of which the symmetry group is a
subgroup. In this case there i~ no question of the higher
group being an invariance group. Consider for example the
elementary example of an isotropic rigid rotator. The sys-
tem is invariant under 0(3) and the states of the system
fall into (2£+1)-dimensional representations of 0(3). There
is however the further regularity that for each nonnegative
integral value of £ there is one and only one multiplet of
states furnishing the (2£+1)-dimensional representation of
0(3). Can we incorporate this information into a gIQUp-
theoretic formulation? The answer is f'yes" .We could
identify the entire spectrum with a single irreducible rep-
resentation of E(3) or of 0(3~1). In the E(3) case the ro-
tation generators are the dynamical variables of angular
momentum~ while the translation generators are the compo-
nents of the radial vector on the unit spherel. Conversely,
given a representation of E(3) we could construct the dy-
namical variables of angular momentum and direction vector
by suitable choice of elements of the generalized enveloping
algebra of the Lie algebra of the group.

The organization of the spectrum in terms of a no~invar-
iance group can be extended to other systems as well. For
the simple solvable systems of quantum mechanics like the
harmonic oscillator or the hydrogen atom this construction
is quite straightforward. In these cases again we have the
choice of starting with the dynamical system formulated in
terms of canonical variables (the oscillator and the hydro-
gen atom) or in terms of related entities (the rotator).
Then we search for a noninvariance group (which has as a
subgroup any invariance group of the Hamiltonian) such that

the entire spectrum of states constitutes an irreducible
representation. In this case we note that the generalized
enveloping algebra of the noninvariance group contains all

the dynamical variables .
But instead of this. we could start at the other end.
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We identify the system by the complete set of its states
defined as furnishing a faithful representation of a
group. Since most interesting systems have infinitely
many linearly independent states, to be able to organize
them into a single irreducible representation, the nonin-
variance group must be noncompact. The dynamical system is
now defined by the noninvariance group and the dynamical
variables are identified with the elements of the general-
ized enveloping algebra. The noncom~act noninvariance
group thus becomes a dynamical model.

For a finite number of degrees of freedom, or more gen-

erallya system usually characterized in terms of a finite
number of algebraically independent variables, the connect-
ed part of the corresponding noninvariance group is a
finite parameter group, and vice versa. It is arbitrary
to start with a noncompact noninvariance groupj but then,
it is arbitrary to start with a system defined in terms of,
say, a finite number of canonical degrees of freedom!

So far we have made no specific choice of the Hamilton-
ian. Once the Hamiltonian is chosenl as a suitable element

of the generalized enveloping algebra, the energy spectrum
can be determined. When the choice of the Hamiltonian
changes so does the energy spectrum. But the dynamical
system itself continues to remain the same!

The identification of noninvariance groups as dynamical
system has been st~died in connection with the problem of
position operators. If one identifies particles with
representations of the Poincare (or extended Galilei)
groups, the canonical variables appropriate for described
particles can be constructed in terms of the momentum
operators and the position operators. It is also well.
known that when one considers zero mass particles of high-
er spin, suitable position operators do not exist; hence

,
the representations of the noncompact Poincare group as a
starting point is decidedly more general.

One may also observe that the noninvariance group of a
relativistic system described bya relativistic wave
equation is larger than the Poincare group. The local
transformation of the covariant tensor or spinor quan-
tities and the space time gradients imply automatically
invariance under the complex Lorentz group. An immediate
consequence of this is the existence of both positive and
negative energy states for the system. If we now consider
the complex Poincare group as the noninvariance group of
the system, we have elements of the generalized enveloping
algebra connecting positive and negative energy states.
The existence of dynamical variables of this kind corres-
ponds physically to the possibility of pair creation by
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interactions.

III. Noninvariance Groups in Particle Physics

What do all these things do for particle physics? Of
what use are noninvariance groups in particle physics? To
answer these questions we note that the sequence of
multiplet levels is the most striking feature of particle
physics. We do know of several multiplets of stable or
quasistable particles which constitute representations of
isotopic spin. and invariance under isotopic spin trans-
formations seems to be satisfied by strong interactions.
But the spectrum of representations is not dictated by
isospin invariance; the organization of the isospin
multiplets into unitary octets and decuplets does pre-
scribe. to a certain extent. the isospin representations.
The problem is now shifted to the question of specifYing
the spectrum of unitary mul tiplets .

We note that unitary symmetry. if considered as an in-
variance principle of strong interactions. is very approx-
imate. It is better to consider it as part of a noninvar-

iance group.
What is involved in specifying the spectrum of repre-

sentations? The usual identification of multiplets con-
sists of states with the same baryon number. but there are
infinitely many such states. most of them unbound and
merging into the continuum. Hence. the spectrum of repre-
sentations of the isospin (or unitary) group must contain
infinitely many entries. If these are to be identified
with an irreducible representation of a noninvariance
group. the noninvariance group must be noncompact. The
generators and hence. the entire enveloping algebra of
such a noninvariance noncompact group (which spans all
particles with the same baryon number) are "meson operators
which commute with the baryon number. These generators
take us from a state bound or unbound with a fixed baryon
number to another such state (bound or unbound) and are
therefore associated with actual physical transitions be-
tween states of strongly interacting particles. It thus

becomes possible to use the noncompact noninvariance grouP
as a dynamical model of particles to describe transition
between the quasistationary levels themselves or between

them and the continuum.
Before going into further discussion of the relation

between generators and physical transitions. it is well to

note the lumping together of stationary (or quasistation-
ary) hadron states with the continuum hadron states. This
possibility as well as the infinite dimensional nature of~
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the (irreducible) multiplets are features of the noncompact
group that are not present in the representation theory of
compact groups. The representation theory of arbitrary
honcompact groups is only beginning to be exPlored.5 In
some special cases like SL(2,R), 0(3,1),0(4,1), E(3) etc.,
these problems have been studied, but one often wishes to
consider other cases. It is also interesting to study the
spectra of various elements of the enveloping algebra of
the group as well as the relation between representations
of dirferent groups which are related in one manner or
other. Following earlier work by Weyl and by Dirac we may
consider the relation between the representations of two
groups whose Lie algebras have the same complex Lie algebras.
The work in this area by Kuriyan, Mukunda and Sudarshan is
a systematic exploitation of the method of the ~ster
Analytic Representation of the local Lie group. It would
take me too far afield to give any but a brief outline of
the method.

IV. Analytic Continuation of Group Representations

Consider for example the deSitter group 0(4,1). It is
a ten parameter group with six generators Jab' belonging
to an 0(4) group with respect to which the other four
generators Babehave as a tensor of the type (1/2,1/2).
The conunutator [ J - Ba'~ -ie Jab

yield respectively 0(4,1 , E(4), and 0(5) according as
e:+l, 0, or -1. It is known that the representations of

the 0(5) group are labelled by two parameters, c, d, which
may be identified with the highest and the lowest values
of an 0(3) angular momentum (generated by Jab' 1 ~ a,
b < 3) occurring in the irreducible representation of 0(5)
labelled by (c,d). Ey varying c,d over suitable values
we get all the representations of 0(5). The representa-
tion is completely described by the reduced matrix elements
of the hermitian operator B in the 0(4) basis. Ey ana-a
lytic continuation of these matrix elements (multiplied by
i) into the domain where the corresponding operator becomes
hermitian we get the (local) unitary representations of
0(4,1). It is worthwhile to point out that we not only
get some classes of repgesentations but all the (known!)
unitary representations of 0(4,1). Ey the method of
Segal, -Wigner,- and Inonu we can, from these, construct
the representations of E(4).

In this example, while the group for which we eventually
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find the representation is noncompact, the basis of the
representation is the compact group 0(4). This simplifies
the problem considerably. In many cases this may not be
the appropriate thing to do; it may be necessary to con-
sider the representation of a noncompact group in a basis
which consists of representations of a noncompact group.
In this case we can again make use of the method of analy-
tic continuation, but with proper caution. As an example,
consider the group 0(2,1) with the three generators
H = Jo1' K = J02' L = J12 satisfying

r
H" K i L

r

=

= -i H~L~HJ = i K l L~K-,

If the compact 0(2) basis L is chosen diagonal (it has
discrete integral or half integral eigenvalues) and the
matrix elements of H ~ ~ are2the familiar quantities
~m(m~l) -j(j+l) for m > j with j real. or
+ 00 > m 9 -00 for j+l/2 pure imaginary .These give the
familiar discrete and continuous representations (of the
covering group) of 0(2.1). With H chosen diagonal~ the
situation is quite different. The spectrum of His co~~
tinuous and there are no proper eigenvectors of H; the
(normalizable) vectors of H are to be chosen as integrals
over the improper eigenvectors with a weight function
which is the square integrable boundary value along the
real axis of an analytic function defined in the entire
complex plane. For the continuous representations the
spectrum -00 < m < 00 is covered twice. while for the dis-
crete representations it is covered only once. The de-
tailed discussion of these representations is beyond the
scope of this paper. The general characteristics are of
sufficient interest to warrant mention. The spectra of
the noncompact generators and the Casirnir operators of
noncompact subgroups are in general contunuous; the ladder
operators tend to change a vector with an allowed eigen-
value to a vector with a nonallowed eigenvalue. For ex-
ample. for the 0(2.1) group L + K tend to change the
eigenvalue of H by + i. But with a vector which Is a
linear combination of such "ideal" basis vectors with ana-
lytic coefficients these changes can be defined as linear
operators on these weight functions. It is also possible
to have a combination of a discrete and a continuous
spectrum for the spectrum of Casirnlr operators of a sub-
group; an example in point is the spectrum of the first
cas~Or operator of the Lorentz group 0(3~1) in the re9uc-
tion of the space-like representation of the Poincare
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group E(3~1). The use of a noncompact noninvariance group
thus provides sufficient richness to accommodate all the
physically related quasistationary and continuum states.

v. Application to Hadron Phenomena

We now return to the description of hadron phenomena in
terms of noninvariance groups. To proceed beyond the class-
ification scheme to the description of interactions we have
to make a hypothesis. The simplest such hypothesis is to
identify the tensor character of the sources of weak and
electromagnetic interactions. Ey a direct application of
the Wigner -Eckart theorem~ ~£e could then deduce conse-
quences of such an assumption. For the linear electro-
magnetic properties and for weak interactions these consid-
erations in relation to the isospin and unitary groups have
already been studied elsewhere. We could however make the
stronger hypothesis that the sources of the electromagnetic
and of the weak interaction and~ more generally~ of any
mesons, are in fact some of the generators of the noninvar-
iance group. In this case quite immediate and useful re-
lations can be obtained provided we neglect the dependence
of the transition matrix elements on the momentum. (This
latter neglect is necessitated by the fact that we are
working with finite-parameter groups but the inclusion of
the momentum dependence would convert it into an infinite
parameter group--see below.) As an example of the method
we may consider the hypothesis12 that the source of lep-
tonic weak interactions is the positive chiral part of the
current to which the pion or the kaon is cOU~led. If we
now identify this current with the generator 3 of a chiral
isospin (or unitary) group~ it follows that in any process
involving an arbitrary number of pions the weak interaction
matrix element (in the limit of vanishing pion four-momen-
tum) must be the same as given by an I = 1/2 (or I = 1)
current rule12 for the strangeness violating (strangeness
conserving) weak interactions~ between the other particles.
(Compare the discussion of nonleptonic weak interactions
below). Similar considerations would suggest that the photo-
production of any number of pions be also subject to the
same limitation. It is a linear combination of an isoscalar
and an isovector in the coupling of the remaining hadrons
(as well as any number of pions). Within the framework of
unitary symmetry the predictions are stronger~ but because
of the approximate nature of the symmetry one does not ex-
pect these predictions to be borne out.

Within the framework of a current-current weak interac-
tion theorv we could make uredictions about nonleutonic~
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decays also. Consider for example the nonleptonic decayof
a hyperfragment of isotopic spin I into a nucleus with iso-
topic spin I with the emission of an arbitrary number of
pions. Thi~' by hypothesis the weak interaction Hamiltonian
transforms as the product of two currents with positive
chiral isospins ~ and ~ negative chiral isospins 0. The
pion sources do not change these tensor characters14 (in the
limit of zero, four-momentum transfer), Consequently the
transition can be characterized in terms of two amPlitudes
for II -I' I = ~ (which reduce to one if I or I' is zero)
and only these transitions are allowed, or if/I -I'I= 3/2.
The transitions therefore contain only ~I = 1/2 and ~I =
3/2 but no other; there is the added restriction that the
inclusion of any number of pions does not alter this char-
acter. In particular, for the transitions B ~ kff and
A ~ N~ , these imply the ~I = ~ rule15, since B A or AN can-
not couple to I = 3/2). For the L ~ N~ transition there are
precisely two amplitudes corresponding to the ~I = 1/2 and
~I = 3/2 contribution. Each of these contribute onlyone
(rather than two) matrix elements according to the schemes

-.'""

N N
2:::-"' z

and these amplitudes imply the triangular relation

..r2 M(L+ ~ p1TO) = M(L- ~ N1T-) + M(Z+ ~ Nrr+

which is experimentally ind~stinguishable ~rom the ~amiliar
~I = ! triangular relationl

~ M(z+ ~ pno) = M(Z- ~ nn-) -M(Z+ ~ nn+:

at the present time. (In principle, the decay of hyper-
rragments would lead to phase inrormation distinguishing
the two triangular relations but this seems to be beyond
present experimental techniques.) The dirference in the
structure could be understood in terms or the ~I = t rule

coupling schemes -r

--'
...: ~

More generally, witn an arbitrary number of pions the coup-

ling suggested earlier is according to the scheme
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Needless to say, one could equally well consider any other
symmetry scheme with respect to which the source of zero
momentum mesons act as generators.

We note that in the above discussions an implicit as-
sumption has been made that the pion sources determine the
interaction. This is a sequel to the assumption that the
pionic weak interactions are all induced effects and no
direct coupling is to be invoked. If a direct coupling is
postulated, that term has to be added to the above contri-
butions and any sum rules that still remain would depend
upon the nature of the postulated direct coupling.

It is interesting to note two things. First, it was not
necessary to restrict attention to weak or electromagnetic
processes only, since in the limit of zero meson momenta we
could apply similar considerations to the strong interaction
transition amplitudes also. It may then happen that some
strong interaction transition amplitudes vanish; for example,
in the absence of a direct pion -pion coupling, the pion -
pion scattering amplitude vanishes in the limit of zero four
momenta of all the pions.

The second remark concerns the use of only currents with
baryon number zero. It is not clear that strong interac-
tions are to be described solely in terms of current with
zero baryon number; it is conceivable that the full charac-
terization of the strong interaction involve currents with
nonzero baryonic number. The multiplets associated ~1ith
these currents would involve resonant states with varying
baryon numbers. On the other hand, if the electromagnetic
and weak interactions are any guide the hadronic charge or
strangeness can change by interactions (charged lepton cur-
rents!) but the hadronic baryon number is absolutely con-
served and only "equibaryonic" multiplets and the associated
currents with zero baryon number are to be considered.

VI .Outlook

We may now ask for a further generalization of these ideas
to apply to noninvariance groups whose generators involve
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nonzero momentum transfer. Since there are no finite in-
variant four momenta this implies generators with all pos-
sible momentum transfers. The associated Lie algebra struc-
ture no longer corresponds to a locally compact group. But
the full description of a local relativistic theory of par-
ticles must imply such infinite parameter Lie groups. It
now becomes essential to study their Fourier transforms as
"Lie fields" which have standard local relativistic proper-
ties. Admittedly these studies would involve a mathematical
framework considerable more advanced than the ones referred
to above. The study of these local Lie fields can be con-
sidered as a "strengthened" form of the algebra of local..
von Neumann rings; the strengthening involves the additional
Lie algebra structure over and beyond the von Neumann algebra
structure. The fields associated with the observed particles
are likely to appear as "integration constants" in such a

theory.
In recapitulation then.. it appears that we have much to

gain by formulating the physics of particles in terms of its
characteristic noninvariance groups. This takes into ac-
count as a primary fact the observed multiplet structure and
allows us to characterize particle interactions in a more
useful manner. The techniques or analytic continuation of
group representations provides us with a convenient techni-
cal tool in this study.
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DISCUSSION

Biedenharn- As one of the people who is fond of group
theory~ perhaps it might be forgiven if I say that now
that everyone has succumbed to what used to be called the
IIgruppenpest"~ one ought to realize very firmly that group
theory is a subset of quantum mechanics and not the other
wayaround. It goes back to Wigner who noted quite some
time ago when he was dealing with the rotation group~ that
this defined a diffeTential equation whose solutions were
far more inclusive than the group theory itself could
permit. This was in his lectures on the special functions
of mathematical phYsics. I like very much the idea of the
hydrogen atom and also note that I made a relativistic
extension of the symmetry properties which has been duly
forgotten in the literature; however~ I had a physical
problem for it~ I would like to say that the point that
Sudarshan rai.sed~ namely ~ the fact that there is a dis-
crete spectrum, which is, of course~ a compact group R(4)~
and a continuous spectrum~ which is of course homologous
to the Lorentz group, should be taken very seriously
because it shows us that if you wish to make a group
theory the basis of your quantum mechanics~ it is too tight
of a mold. It is a Procrustian bed that just wontt work,
because we see here that there is no group that contains
this system; no matter how you slice it you just cantt get
away with it. Now you can of course generalize~ and the
way you generalize is by analytical extension, and in
order to prove this by a reductio ad absurdum, I took the
Wigner coefficient and I gave the most general possible
example of any possible extension which is a double
contour Pockhammer integral, which was defined for every
possible value analytically and uniquely for all the
values of its observables. And what was the use of this
beast? I haventt found it. But you can get around these
difficulties of the so-called degenerate or discrete
series. By means of this horrible beast you can construct
every possible representation of any group that has the
complex algebra of SU(2) (or an extension of it) and you
can find wi th this Wigner coefficient an analytic function
which gives a completely satisfactory answer in one and the
same Hilbert space wherever it is possible to find a group
with this many parameters. But I don't believe that this
is physics and I think that many of the colleagues would
agree wi th me. May I make one more remark ? I have a
colleague who is extremely clever, Jean Nuyts, who is now
at the Institute for Advanced Study. He posed the question
that Prof. Sudarshan raised on the reduction of 0(2.1),
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actually SU(l,l), with respect to a noncompact subgroup,
to the Jauch Seminar in Geneva, and I believe that Jauch
gave the answer that Professor Sudarshan gave here. These
are very interesting problems and they show me something
quite different, namely that this is the wrong way to
proceed.
Sudarshan -I would like to make two remarks. The firs t
remark is that obviously some quantum mechanical systems
do not admit of nice group theoretic description and some
groups do not provide nice quantum mechanical treatment.
The study of the noncompact group as a model for particles
has been attempted in the series of papers that were
initiated by Pryce and Eddington, and in a more exact and
satisfactory form by Newton and Wigner, about the notion
of position operators and canonical variables in
relativistic theories. It was shown that canonical
variables are very good for describing most relativistic
systems, but they are certainly not good for describing
zero mass, spin larger than one-half, particles. Now we
should ask, should we stick with the canonical variables
or should we stick with the representation of the Lorentz
group? Obviously we do not stick with either of these
things; we avoid the question and go on to more glorious
things by considering a relativistic field, which happens
to have some quantum states which happen to have these
properties. The second thing is that quantum theory in
which you do not have an additional group structure is
more general than a quantum theory which in addition to
the operator structure, contains also the structure which
is associated with the Lie algebra. If you have afield
theory in which you have local observables which are
defined in an appropriate sense in a mathematical theory,
which satisfy only causal commutation relations, then that
theory is definitely more general than the theory in which
you further require that equal-time commutation relations
of some of these objects must themselves be newobjects
which belong to the same algebra-the current algebra kind
of commutation relations. Now obviously, a theory which
does not allow for the second kind of thing is more
general, but the question is do we want such a theory?
It is my belief at the present time that we have much
more to gain by using the group theoretic framework,
because that seems to be the general pattern into which
many things can be put. One cannot just say that this is
not the right method of procedure; Dr. Fronsdal mentioned
yesterday that obviously these studies do not lead to
anything. The only way to proceed is to see what happens
a few years from now.
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Fronsdal- I wo~d like to point out one thing that you
said here about the representation of noncompact groups
which I have not said before3 is that f(A) goes into
f(A ~ i). This is wrong! Everything you said is right
and has been said before but I am sure that the very last
statement that f has to be an analytic function of A is
false! I wo~d like to see your derivation of it if you
really believe it.
Sudarshan -I~ he wants to see a derivation3 he will see
it.
Hamermesh- If you want to see a derivation3 you can look
up a paper in the Bulletin of the Academy of Sciences of
the U.S.S.R. by Gelfand in which this problem is treated
completely.
Sudarshan -Much of this now appears in the English
translation of the book by Gelfand and Shilov and I have
had the proof sheets of this thing; so I just don't buy
this statement that Fronsdal made.
Guth- I wo~d like to come back very briefly again to the
hYdrogen atom. We can still learn ~rom the hydrogen atom
though it may not be directly relevant to elementary
particles. In the case of hydrogen one sees clearly that
the occurance of the so-called accidental degeneracy
group is accidenta13 so that this type of theory cannot be
generalized for everl system. That group gives3 for the
Kepler problem3 the --of the energy levels. On the other
hand3 the so-called n2 noninvariance or dynamical group3
just mediates the transition from one level to another3
so I don't quite see how it leads to dynamics. In that
respect I agree with Larry Biedenharn. However 3
considerations like Sudarshan's might be fruit~~ in
trying to develop a sort o~ generalized quantum mechanics
where you are guided by group considerations but don't
take everything that you now know in Quantum mechanics.


