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1. INTRODUCTION

Symmetry groups in physics seem to belong to two classes: the
so-called relativity (or frame) groups, which may be called the external
symmetry groups, defined by the geometric relations between “inertial”
systems for which the laws of physics are the same, and the internal
symmetry groups. We call the symmetry “internal” because we see only
its manifestations; there is no primitive geometric characterization of
the symmetry group from any fundamental dynamic principle. We
shall try to see to what extent a dynamic principle can be expected to
generate a symmetry group.

In this connection, two sets of quantum numbers can be distin-
guished—the additive quantum numbers (such as the third com-
ponents of J and T), which are algebraically additive, and the nonad-
ditive (“vector”) quantum numbers (such as the total angular mo-
mentum J, total isotopic spin T, etc.), which obey vector laws of ad-
dition and multiplication. One fact worth recalling is that the
irreducible representations of a compact group are finite dimensional
and are equivalent to unitary representations.

We naturally ask about the properties of particles in interaction.
Suppose, for example, we consider the following (virtual) reaction:

N—>N+n»n
From the (NNz) vertex, we can write the invariant interactions (by
using the Clebsch-Gordan coefficients) and obtain the following

relationships between the various (NN =) coupling constants (g) and
among the various virtual transition probabilities:
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where p and n refer to the proton and neutron, respectively. From
these we conclude that for the total widths

I' (n — any particle) = I' (p — any particle)

We know that the multiplet structures displayed by the known
particles are consequences of the (postulated) existence of an internal
symmetry. We therefore ask whether the existence of the multiplet
structure conversely implies an internal symmetry.

Recently, there have been a good many attempts to explain the
internal symmetry by some direct dynamic calculations. If we start
with a multiplet of N vector mesons of equal masses and assume that
the interactions among these vector mesons are essentially trilinear in
character, we can make a dynamic scheme in terms of a straight-
forward and self-consistent bootstrap mechanism between these
(equally massive) vector mesons. One such attempt was made by Capps,!
who found that the interactions among these N equally massive vector
mesons obey unitary symmetry (i.e., invariance under the group SU,).
Capps was surprised to find this relationship between unitary symmetry
and a self-consistent bootstrap calculation. It looked as though unitary
symmetry could be derived from first principles. However, it is possible
that the symmetry would have emerged from the assumption of the
existence of a multiplet degenerate in mass before the interaction and
the postulate that this multiplet structure is preserved even in the
presence of interactions, so that the particles exhibit the same mass
degeneracy even in the presence of the interaction if they have equal
masses. Such arguments have been used by Sakurai,? who tried to
prove that the emergence of the symmetry is not a consequence of a
sophisticated dynamic calculation, but rather the immediate con-
sequence of the assumptions:
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1. Equality of masses of the particles.

2. Existence of a degenerate multiplet before the interaction.

3. The presence of interaction not altering the equality of masses
(or the multiplicity of the particles).

He directly shows, as an example, that if we equate the contributions
of certain self-energy diagrams we arrive at the required symmetry.

Thus, if we equate the second-order self-energy of the nucleons
(assuming equality of masses before the interaction) as shown in
Fig. 1a and that of the pions as shown in Fig. 1b, we obtain

2g§)pn° = 2g3m7t° = gimz‘ = gszprz‘
In this calculation the multiplets are treated “on the same footing,”

and the “total width” for each component comes out to be equal. By
taking fourth-order diagrams also, we can further deduce

8ppre = ~—&nnao
Thus, the symmetries may well be explained if we assume the equality
of masses and multiplicity of the particles and postulate that these
properties remain unchanged even in the presence of interaction.
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2. GAUGE FIELDS

The consequence of the existence of symmetries and the postulated
invariance of interactions under the gauge transformations of the
second kind is the existence of vector gauge fields coupled lmearly to
conserved quantities (such as electric charge, etc.).

Unlike the electromagnetic field, which by itself is neutral and
interacts only with charged fields (and is thus coupled to the electric
current), gauge vector fields may themselves carry the properties.
The isospin gauge field, for instance, itself carries the properties of
isospin, and it is hence nonlinearly self-coupled. We may even consider
a situation in which the gauge vector field alone carries isotopic spin
and is consequently self-coupled. Thus, if we can write L = j*4,
for the Lagrangian of the electromagnetic interaction, where A4, is the
electromagnetic field and j* is the current to which it is coupled, what
can we write for the Lagrangian of the interaction of the gauge vector
field? Since the gauge vector field is coupled to itself, we naturally
expect that the interaction can be written as a product of these fields B.
Then how many B can enter the product ? The simplest possibility (which
we may take to be basic) is the trilinear interaction between vector parti-
cles. This is because the current is bilinear in B field and coupled to an-
other B field, making a trilinear vertex.

Cutkosky?® has given a simple model in which he assumes that there
are a number (N) of vector mesons which have the same mass, i.e.,
he assumes a multiplet structure. Then, with a number of additional
plausible assumptions, he shows that a Lie group could be associated
with these particles. The assumptions made are:

1. The vector mesons arise as self-consistent bound states of pairs
of vector mesons.
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Fig.

2. The binding force is mediated by the exchange of single vector
mesons; for example, the long-range part of the force is given by
the one-particle exchange diagrams shown in Fig. 2.

3. The renormalized coupling constants are well approximated by
the simplest irreducible vertex part, with the “bare-coupling con-
stants” set equal to zero, as shown in Fig,. 3.

4. Parity is conserved in strong interactions, and strong interactions

are invariant under charge conjugation.

. Electric charge is conserved.

6. The dependence of the vertex on the internal labels F,,, is antisym-
metric in all pairs of indices.

W

If we represent the particles by real vector fields B, (u = l N),
the invariant interaction has the form

Fubc Ba Bb Bc

and F,,, is antisymmetric. We then look for the eigenfunctions of
F,,.. The Born-approximation scattering amplitude is proportional to
Vab,cd = (Fadr Fbcr - Facr der) (2)
corresponding to the two diagrams in Fig. 2 and taking into account
the antisymmetric nature of F.
Since all the particles which are together, and also all the exchanged
particles, have the same mass (which we have normalized to unity),
it is clear that we can obtain N degenerate bound states only if ¥ has

N degenerate eigenvalues. Also, the F themselves must be eigenvectors
of V, in view of postulate (3):

Vnh ot an:' = thh ()
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where A > 0. Since F,,, can be interpreted as the internal “wave
function” of the particle considered as a bound state of the two par-
ticles (@, ), we may normalize F as

Fubr Fbas = SrS (4)

If the model is self-consistent, we must see that no particle comes out
with a mass less than the mass with which we started. Therefore, of
all the antisymmetric eigenvectors of ¥ (V4ry = M), we should
allow only those for which

A (5

that is, we must require that no other vector particles which have a
lower mass than the N we started with should arise from the potential;
otherwise, the model will not be self-consistent. We then proceed
to determine F, satisfying equations (3), (4), and (5). We have from
the definition of trace

TrV?= NA2 + 3 A2 173

The explicit form of ¥V given by equation (2), together with equations
(3) and (4), can be used to calculate the alternative expression

TrV? = 2N — Na (N
Therefore, it follows that
e+ 2 L (®)
so that
A< €]

The equality holds when X A= 0. Under the orthogonal trans-

formation
B ,a = OabBb

equations (3) and (4) are covariant. For infinitesimal transformations
of 0,;:
0ap = Oap + ie* G,

the F,,. transform according to
F. = Fope + ie® fase
fa%c = Frch:a + FarcG:b + Faerfc (10)

Cutkosky makes assumption (5), that the interactions satisfy a non-
trivial additive conservation law (say, conservation of charge at each
vertex). This requirement simplifies the analvsis. because F... are
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invariant under gauge transformations of the first kind if we hold this
assumption. (If we had assumed the existence of / independent additive
conservation laws, F,,. would have been invariant under an / para-
meter Abelian subgroup of 0,.) If we denote by G%, a generator of the
Abelian gauge transformation, then

Frch‘:a + Farc'G‘:b + Faer‘r{c = 0 (11)

If we multiply equation (11) by Fy.q4, and use the fact that Fis antisym-
metric, we get

G:d = Ve¢d,adb G:b (1 2)

The generators G4, are eigenvectors of ¥ with unit eigenvalue. Hence,
from equations (5) and (8) it follows that all A, = 0; consequently, the
completeness of the eigenvectors of ¥ then allows us to write

Vab.cd = Fabercr
which can be written as
Fabchdr + Fbcha,dT + Fcaerd'r =0 (13)

using the definition of ¥ given by equation (2). Equations (13) and (15)
are the necessary and sufficient conditions for the F,,. to be the struc-
ture constants of a compact Lie group. The association is necessarily
with a particular representation of the group, the adjoint representation.

Quite recently, Weinberg* stated that charge conservation seems to
play a crucial role in generating continuous symmetries. He observed
that any discrete (or continuous) symmetry arising from dynamics
will always be transmuted into a full-fledged Lie group by the condition
of charge conservation, provided that the electric charge operator is
not invariant under the original symmetry. If U is any member of the
group of physical symmetries, then also is

U~'[exp (0 Q) U = exp [i6(U~' QU)]

where Q is the charge operator. Hence, both Q and U~'QU belongto
the Lie algebra of the physical symmetry group. When U does not com-
mute with Q, then we can generate a larger symmetry group.

However, it seems to be really possible that we may relax the con-
dition of charge conservation in obtaining internal symmetries. In a
model calculation,® we find that charge conservation comes out natur-
ally and need no longer be imposed. This is a direct self-energy calcu-
lation such as that of Sakurai® with no condition on electric charge
conservation. We can also try to relax the condition of charge conser-
vation from Cutkosky’s calculation.®
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Let us first consider the modified Cutkosky model. The potential
established by the exchange of single vector mesons between pairs of
vector mesons (a, b) and (c, d) in the Born approximation can be
written as

Vab,cd = (Fuchbdr - Fadercr) (14)

corresponding to the two diagrams given in Fig. 2. This potential to
a very good degree of approximation is also the scattering amplitude
which will contain pole terms corresponding to single particle ex-
changes to the direct channel. We omit higher intermediate particle
contributions to the scattering amplitude, i.e., in the pole approxi-
mativik

Fﬂb' chr

s 1
which corresponds to the pole diagram shown in Fig. 4. Here s is the
total center of mass energy squared and p is the mass of the particle
exchange. Thus, the potential

Vabea = —FaCerdr + Fadercr
= X,Fa.bchdr

Scattering amplitude = ¥

(16)

where x is a constant which does not depend on r. (This equation can of
course be never true as it stands; the left-hand side terms have poles
in the momentum transfer variables ¢ and u, while the right-hand side
term has a pole in the energy variable. However, if we iterate either the
left-hand (or the right or both!) terms, we will change their dependence
ons, t, u. Butitis possible that their dependence on the internal labels
a,b,c, dis unaltered. We consider this possibility here only, and after
the solution is obtained we can in fact verify that a “horizontal”
iteration leaves the a, b, ¢, d dependence essentially unchanged, since
a, b, c, d turns out by virtue of equation (18) to be a constant multiple
of a projection matrix. We short-circuit these essential dynamic points
in the sequence of arguments in the text. Equation (16) is an identity
which we can write as

XFabTchr - Fadercr + Fachbdr = 0 (163)

Making all permutations b, ¢, d in equation (16a), taking into account
the antisymmetric nature of the F, and adding all such equations, we
can obtain the equation

(2 - X)[Fabchdr + Fachbdr + Fa.dercr] =0 (17)

But vy is a function of the invariant energv and momentum transfer
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variables, and therefore almost everywhere the factor (2 —
nonzero. Hence ’

Fabchdr + Fachbdr + Fadercr =0 (18)

Equation (18) is just the Jacobi identity obeyed by the structure con-
stants of a Lie group. Consequently, from the group property, there
should be at least one Abelian subgroup corresponding to conser-
vation of an additive quantum number, which we choose to be the
charge. Thus, charge conservation comes out of the calculation.

Next we shall see that charge conservation can in fact be relaxed
from Sakurai’s calculation of self-energy contributions.® Consider
now the self-energy diagrams of pion and nucleons shown in Fig. 4.
Here the labels a, B...correspond to the mesons and r,s,¢ cor-
respond to nucleons. Let us at this stage state the generalized Smush-
kevich principle: “The (dressed) propagators of the component fields
of a multiplet are the same.”

A more useful and (possibly) equivalent statement of the Smushkevich
principle is the following: “Topologically identical self-energy dia-
grams should give equal contributions to the propagators of com-
ponent fields of a multiplet.”

Suppose we write down the nucleon self-energy contribution from
Fig. 5. This is equal to

azt 8ria8isa
r a
a yel r /Mm\s
: t o
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where g, is the coupling constant corresponding to the vertex (rta).
Let us define the matrices C by

&ria = € (20)
so that equation (19) becomes

E &ria8isa = E C;";Ctg
= Y, (C*C*) rs-th element (21)

= Asrs
by Smushkevich’s principle, where 4 is a constant independent of r

and s. Thus
2 A(C*C*) = Al (22)

Similarly, the contribution from Fig. 4 to the pion self-energy is equal
to

7% 8rsa8srs = 2 C:;Cse

=3 C:C?
= Tr(C~C#)
= BS:\'E

by the Smushkevich principle, where B is a constant independent of
o and 8. Thus

(23)

TrC=C? = BS,, (24)

We can easily show that 3B = 24, but we shall not use this result.
Therefore, our task is to find the matrices C which satisfy equations
(22) and (24). Since the pion fields retain their properties under real
orthogonal transformations:

ce— AZ 02 C, (25)

and the nucleon fields retain their properties under arbitrary unitary
transformation

C*— UuCc~U-!
we can show that the C are the matrices that we want, namely, 7,, 7,,
and . Tt is always possible, by an orthogonal transformation, to have
two of the matrices C,, C,, and C, be traceless. It may be noted that the
C are Hermitian, i.e., we can have

TrC, =0

26
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Since any traceless Hermitian matrix can be made a multiple of 7, by
a unitary transformation, let us choose C,. [Incidentally, it is clear
that Tr(7, 7;) = 2 and therefore satisfies equation (24) if we choose
B = 2] That is,
C 1= ’1"1 (27)
[Otherwise, we get C, = (B/2)*r,.] C,, which is to be traceless and
Hermitian, can be expanded as
C,=ar,+ br, + cr4 (28)
where a, b, and ¢ are real coefficients. In this, we exclude the unit

matrix by virtue of condition (26). Let us now use equations (22) and
(24) to evaluate the coefficients q, b, and c.

TrC,C, = 2 = 2(b® + ¢?)

therefore _
) b+t =1
Tr(C,Cy) =0=2a=—>a=0 (29)
We can choose b == cos # and @ = —sin 6. Thus
Cy,=7,¢c0860 — 1, 8ing 30)

By a rotation around the 7, axis with our choice of C, unaltered, we
can get C, as

exp (37, - C, exp (—37,°0) =1, (31
Thus, having found C, and C,, let us now find C,. In general
Ci=dr +ery+fr,+ gl (32)

The unit matrix is included since we do not need C, to be traceless.
Coefficients d, e, f, and g are real. We now use equations (22) and (24)
and the choice of C, and C, tofind d, e, f, and g:
TrC,Cy=0: —-d=0
TrC,C; =0: =e=290
TrC;Cy=2: 2(f2+g?)
frig -1
therefore
Cg =_f73 + gI (33)
If we use equation (22)
CC + GG+ C,C, 4l
so that
+14+f*+g*+2fgr, Al
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Since each term on the left-hand side has to be a multiple of the unit
matrix, the only term which is not a multiple of identity should vanish:

fe=0=>f=0 or g=0
Thus we are left with two choices:
Ci=m, or Cy=1 (34)

In the following, we will show that the choice (r,, 7, I) for the C
contradicts the Smushkevich principle given in equation (24). If we go
to the next higher order self-energy diagram for the meson (Fig. 6),
the contribution is

”Zt grmgstrgutﬁgur'y

v'v’,u

—_ a 8
_r,§,ucn Cs‘; Ctu Cz'tyr (3 5)
Y

=3, Tr(C*C"CAC")
Y
= B’&,B
by the Smushkevich principle, where B’ is another constant independent
of @ and B.
If we choose the basis (r,, 7, I) for the C, then for& = 8 = 1 or 2

we really get
Y Tr(C=C"CEC") =2
v

and hence equation (24) is satisfied. However, for a = 8 = 3, we get
> Tr(C*C"CEC") = Tr (I7,I7)
! 4 Tr(IroI7y)
+ Tr(IIID)
=2+4+2+2

and thus equation (35) is not satisfied. Hence, we are left with the
unique choice (r,, 75, 7;) for the C. The ambiguity about the sign
(i.e., choice +7,, 47,5, 4-7;) is there, but this can be eliminated by a
redefinition of the pion fields. Thus we end up with a (7 -¢) interaction
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for the n-N system. In other words, the interaction is such that the
charge is conserved.

Therefore, we have seen that the idea of charge conservation can be
suppressed in both Cutkosky’s and Sakurai’s calculations. The question
is whether we can generalize this statement to all interactions. The
answer seems to be no, since we have a counterexample for the (Z=x)
system. A similar fate befalls Sakurai’s method, which includes electric
charge conservation for higher isospins.

It appears then that no particular axiom is crucial in the “derivation
of an internal symmetry,” since Sakurai’s calculation relaxes self-
consistency, and we have shown that even charge conservation can be
relaxed. The question is how many axioms we need in order to specify
the internal symmetry. The point of view advanced here is that the
Smushkevich principle, when augmented by suitable auxiliary restric-
tions, is the really basic one in understanding the internal symmetry.
The origin of internal symmetries is still open, although we have some
indication as to the direction in which a correct solution may lie. These
demonstrations have now been extended® to a variety of systems—
in particular, to a system of two multiplets of » components each
coupled to a multiplet of (n* — 1) members to deduce invariance
under the special unitary group SU(n), again without assuming electric
charge conservation.
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