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In this paper we discuss the problem of the Poisson bracket realization of various Lie algebras in
terms of analytic functions of the generators of a given Lie algebra. We pose and solve the problem of
realizing the general 0(4), 0(3, I ), and £(3) algebras in terms of analytic function$ of the generators
or a prescribed realization of an £(3) algebra. A similar problem is solved for the symmetric tensor
realizations of SU(3) and SL(3, R). Related questions are discussed for O(n + I), O(n, I), £(n), SU(n),
and SL(n, R). We study in some detail the finite canonical transformations realized by the generators of
the various groups. The relation of these results to the reconstruction problem is briefly discussed.

of elements whose Lie algebraic structures are

isomorphic.
Given any Lie algebra .A. of quantities which

possess an associative law of multiplication (in addition
to the Lie bracket), we can define an enveloping
algebra 8 whose elements are polynomials in the
elements of the primitive Lie algebraA. The enveloping
algebra 8 can be given an induced Lie algebra structure
by imposing the relation

{XI. XI. Y} = {XI. Y} .XI + XI. {XI. y},

where the curly bracket stands for the Lie bracket
and the dot (which will usually be omitted} stands for
the associative product. We can generalize. our defini-
tion of the enveloping algebra & by including among
its elements the analytic functions of the elements of

the primitive Lie algebra A. This enveloping algebra
& is given an induced Lie-algebra structure by imposing
the derivation property. Using this rule, we can
identify & with an infinite-dimensional Lie algebra.
In classical mechanics it would be a Lie algebra of
Poisson brackets, whereas in quantum mechanics it

would be a Lie algebra of commutators. The envelop-
ing algebras in the two cases have, in general, quite
different structures. However, in both cases there are

certain sets of invariant elements which have vanishing
Lie brackets with every element of the primitive Lie
algebra and, consequently, with every element of the

enveloping algebra. For the quantum-mechanic:ll
case, these are the well-known invariant operators,
which are expressible as functions of the so-called
Casimir invariants. If the N elements of the primitive
Lie algebra are denoted by XI t X,t ...t XN t then
the Casimir invariants (for both quantum and
classical systems) are homogeneous polynomials of

the type

I. INTRODUCfION

T HE success. of group-theoretic methods in particle
physics has led to a re-examination of these

methods as applied to elementary dynamical problems
in both quantum and classical mechanics. One finds
that sometimes the quantum-mechanical and the
classical-mechanical problems can be made to cor-
respond to each other in such a fashion that their
invariance groups and their noninvariance groups have
the same structure. Thus, for example, the isotropic
hannonic oscillator in n dimensions has the invariance
group SU(n) and the noninvariance groups SU(n, I)
and SU(n + I), both in classical and in quantum

mechanics.1
For quanturn-mechanical systems, the Lie algebras

of the invariance and noninvariance groups are realized
by commutation relations between appropriate dy-
namical operators, whereas for classical systems the
Lie algebras are realized by Poisson brackets between
appropriate dynamical variables. That such different
~Iizations exhibit a correspondence between them is
quite remarkable. It has been known for quite some
time that the infinite-dimensional Lie algebras of poly-
nomials in canonical variables for quantum mechanics
(commutator brackets) and for classical mechanics
(Poisson brackets) have quite different structures.2
Yet there exists the same local Lie group in both kinds
of dynamics. This, then, suggests that in these two
different algebraic systems, there are selected subsets
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LIE ALGEBRAS

where CSI ...2~ are some numerical coefficients which

are symmetric in the indices :XI' ..., :xn. It is possible
that in some particular realizations these Casimir
invariants may degenerate into numbers. (In fact, in
the case of irreducible realizations, all these invariant
elements reduce to numbers.)

In many cases, it is possible to select, out of the

infinite-dimensional enveloping algebra, a finite-
dimensional subset of elements which constitute
another Lie algebra. We show, in this paper, how such
construction can be carried out for the realizations
of the Lie algebras by Poisson brackets. We begin in
Sec. 2 by giving the structures and the Casimir invari-
ants of the Lie algebras of the groups £(3), 0(4),
0(3, 1), SU(3), and SL(3, R). A simple realization of
all these Lie algebras in terms of three pairs of canon-
ical variables qa , Pa (a = I, 2, 3) is also given in this
section. In Sec. 3, after defining the primitive £(3) Lie
algebra and the corresponding generalized enveloping
algebra, we give explicit realizations of the 0(4),
0(3, I), and other £(3) Lie algebras. The properties
of the finite canonical transformations generated by
the elements of these Lie algebras are also discussed.
A similar problem is discussed for SU(3) and SL(3, R)
Lie algebras in Sec. 4. Section 5 deals with a generaJi-
zation to n dimensions, while in Sec. 6 we discuss
briefly the relation of these results to the problem of
reconstruction of canonical variables from the
generators of a noninvariance group.

I. u~ u~ aJgcora 01 Ule reaJ pseudo-ol1hogonal

group 0(3, 1) in four dimensions again consists of six
elements: Jo' K; , and has the following basic Poisson

brackets:

1. STRUCTURES AND INVARIANTS OF THE
LIE ALGEBRAS OF V ARIOUS GROUPS

In this section we briefly outline the structure and
invariants of the Lie algebras of £(3), 0(4), 0(3, I),
SU(3), and SL(3, R).

(2.11)

(2.12)

(2.13)
r. £(3) Lie Algebra

The Lie algebra of the Euclidean group £(3) in

three dimensions consists of six elements: JG, p G
(a = I, 2, 3), and has the following basic Poisson

brackets:

{}a' }.} = £a&.J.,

{}a, K;} = £a&cK;,

{K~, K;} = -£ab.J..

The two quadratic elements

}2- K't = }a1a -K~K~
and

(2.14)

J. K' = JGK~ (2.15)

of the enveloping algebra are invariants. For areal

faithful realization, either invariant may be positive,

negative, or zero.

(2.1)

(2.2)

{Jm,Jb} = Emllc1..

{Jm,Pb} = EmJ.,

{Pm, P.} = 0.
(23)

Here E"b. is the completely anti symmetric unit tensor
of Levi-Civita. Throughout this paper we employ the
usual summation convention according to which a
summation is implied over repeated dummy indices.

The two quadratic elements

iT. SU(3) Lie AJg..

The Lie algebra of the unimodular unitary group
SU(3) in three dimensions consists of eight elements:
I. (a ~ 1,2, 3) and five linearly independent ele-
ments of a symmetric traceless "quadrupole" tensor

Q..:
pi = PaP.

(2.4) Q... = Q..; Q. = 0. (2.16)

and

J.p =J{JP. (2.5)

of the enveloping algebra are invariants. We shall
assume that the realization is real and faithful so that
p2 is positive and may be normalized to unity. There

are, however, two classes of realizations corresponding
to vanishing or nonvanishing of J .p .

ii. 0(4) Lie Algebra

The Lie algebra of the real orthogonal group 0(4)
in four dimensions also consists of six elements :

J{J , K,., having the following basic Poisson brackets
(I ~ a, b, c ~ 3):

{J{J , Jb} = £{Jb.J. , (2.6)

{J{J' Kb} = £{Jb.K., (2.7)

{K{J'Kb}=£{J~.. (2.8)

The two quadratic elements

J2 + K! = Jal. + K{JK,. (2.9)
and

J. K = J{JK{J (2.10)

of the enveloping algebra are invariants. For a real
faithful realization J2 + K2 is positive, whereas J .K
may be positive, negative, or zero.

ill. 0(3, I) Lie Algebra
"ri.- T :- _1__L_- ~~ ...
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For this realization, the invariant J .p vanishes and
the other invariant pI is given by the dynamical vari-
able PClP4 .This realization is reducible, since the value
of pI is unchanged by canonical transformations
belonging to £(3). One can now ask whether one could
construct other realizations of £(3) in terms of the
same canonical variables, such that the 0(3) sub-
algebra generated by ]4 is unchanged and that the
two invariants J .p = IX1j and pI > O can be assigned
arbitrary values. For this purpose we consider

]4 = ECI~bP. (2.29)

In this case, we have the following basic Poisson

brackets:

{J~,Jb} = (~e, (2.17)

{J~, Qbe} = ("bcQde + ("edQbd' (2.18)

{ Q~b , Qe4} = ( (CI(,bbd + (aA.bbe + (be,baci + (bd'bCl()J, .

(2.19)

There are two basic invariants, one of the second

degree,
J~G + iQGbQGb' (2.20)

and one of the third degree,

(J3/2)(3JGQGbJb -QGbQbcQ.J. (2.21)

As will be seen in Sec. 4 [see also Eqs. (2.40), (2.41)],
there exist some realizations in which the cube of the
quadratic invariant equals the square of the cubic

invariant.

and

Yo SL(3, R) Ue Algebra

The Lie algebra of the unimodular real linear

group SL(3, R) in three dimensions also consists of
eight elements : JQ (a = 1, 2, 3) and five linearly

independent elements of a symmetric traceless tensor
Q~& (Q~. = Q~&; Q~& = 0). The basic Poisson-bracket

relations are

{JQ,Jb}=£Qb"J.. (2.22)

{JQ, Q~.} = £QbdQ~. + £Q.dQ~, (2.23)

{ Q~b , Q~} = -( £Q..r}bd + £tJ4.db. + £b..r}ad + £bd.r}a.)J. .

(2.24)

There are again two basic invariants, one of second

degree,-
JoJo- tQ;.bQ;.b, (2.25)

and one of the third degree,

(J3/2)(3JoQ;.bJb + Q;.bQ~CQ;..). (2.26)

It will be seen that, with the particular choice of the
over-all coefficient in (2.26), in some realizations the
cube of the quadratic invariant equals the negative
of the square of the cubic invariant.

For each of these Lie algebras, an explicit con-
struction can be given for the appropriate elements in
terms of three pairs of canonical variables qo, Po which

satisfy

p " = f(JZ)p" + g(JZ)J" , (2.30)

where f and 9 are some functions of JZ. If we now
impose J .p = 1%0 and pi = 1, we obtain, from ~2.30),

the following expression for P,,:

{ 1 ( ~ ~ i
} 1%0 p = -1- - p + -1 . (2.31)" pill " ]1 "

It may easily be verified that (2.29) and (2.31) do
furnish a realization of £(3).

For the elements of the 0(4) Lie algebra, we have
the following simple construction:

1" =,,~&Pe' (2.32)

K.. = (pa -J1)i(pl)-tp". (2.33)

In this particular realization the invariant J .K
vanishes and the other invariant JZ + KI has the value
pa. If we choose 1" given by (2.32) and K.. by an
expression similar to the one given on the right-hand
side of (2.30) and impose the conditions J .K = (X,8,
11 + KI = (XI + pa, we obtain a realization with

arbitrary values of the two invariants:

1" =,,&.,q&Pe' (2.34)

K" = {(Pa -J1)(JZ -(XI)/JZr}ip" + «(X..8IJ1)J". (2.35)

It may be checked that this is a solution of (2.8).
Without loss of generality we can assume ..8 ~ I(XI ~ 0.
The realization given by (2.34), (2.35) is real in the

region ~I ~ 11 ~ pa.
A realization of 0(3, 1) is obtained by simply

choosing K: = iK" and by analytically continuing x
to pure imaginary values, i.e., by putting (X' = i:x.

where ~' is now real. We thus obtain the following
construction for the elements of 0(3, 1) Lie algebra:

I. =O&eq&pe' (2.36)

K~ = {(fl -pi)(fl + (X'~/flpl}i p" + ((X' ..8/11)1" .

(2.37)
The two invariants J .K and Ii -KI have the values

(X' ..8 and pa -(X'I, respectively, and the realization
is real in the region ]1 ~ .8' .

{qa. qb} = {Pa.Pb} = 0. ,- ,

The simplest construction for the elements of the

£(3) Lie algebra is given by

la = (q X P)a = fa~bPe. (2.28)

p a = Pa .
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The simplest construction for the elements of the
SU(3) Lie algebra is given by

J ~ = (~~&PO' (2.38)

Qab = q~qb + p~P& -!IJGb(q1 + pi). (2.39)

In this case the two invariants have the values

Ja1~ + lQ~bQ~b = !(qJ + r)J (2.40)

and

( .,;'3/2)(3.1"Q"bJb -Q"bQbcQca)

= -(1/3J3)(qJ + pl)3, (2.41)

so that for such realizations, the two invariants cannot
be assigned independent values [the cube of (2.40)
equals the square of (2.41)].

Lastly, a simple construction for the elements of
the SL(3, R) Lie algebra in terms of the three pairs
of canonical variables q" , p" is given by

J" = f"b.qbPc. (2.42)

Q~b = q"qb -P"Pb -1I'J"b(qJ -p~. (2.43)

The two invariants have the values

J"J.. -to.:...Q::. = -l(qJ -pl)1 (2.44)

the following basic Poisson-bracket relations:

{1.. .1b} = E...;. .(3.1)

{1... Pb} = EJ.. (3.2)

{P...Pb}=O. (3.3)

Restriction to an irreducible realization of £(3)
implies that the two invariants pi > O and J .p
are given by two preassigned real numbers. Since
the multiplication of p ..by a constant does not change
the Poisson-bracket relations (3.1 }-(3.3), we can
normalize p ..such that p ..p ..= I. We then define
the "phase space of £(3)" as the set of all pairs of
real vectors P and J obeying the constraints

pi = p ..p ..= I; J .P = 1..P. = IXo .(3.4)

Because of these two constraints the phase space is
now a four-dimensional space. However. we will
continue to label the points of this phase space by
two vectors P and J. The finite canonical transforma-
tion generated by 1.. and p ..are mappings of this phase
space on to itself. and provide a realization of the

group £(3).
Under a finite canonical transformation generated

by 1.. the point (P..1J is mapped to a new point
(P~.1;) as follows:

sin II

II

(1 -CoS II)
R&a(n) = cas IId&a + I ".n. +

n
t'~b.n.

and u,- --

(.j3/2)(3JQ~bJb + ~Q~.Q:..J = (1/3.j3)(ql -pit.

(2.45)
For such a realization also, the two invariants cannot
be assigned independent values [the cube of (2.44)
equals the negative of the square of (2.45)].

All these general constructions are made in terms
of one set of three canonical pairs of variables. It is
shown in the following sections that it is possible to
express the elements of one realization as functions
of the elements of another realization. In general,
the functional forms involve algebraic functions,
rather than polynomials. We therefore have to work
with the elements of the generalized enveloping
algebra which contains analytic functions (not only
polynomials) of the generators. Within such a frameu
work we show, in the following sections, that the
generators of the Lie algebras of 0(4), 0(3, I), £(3),
SV(3), and SL(3, R) can be expressed in terms of the
elements of a generalized enveloping algebra of a
given £(3) realization.

3. REALIZATION OF 0(4), 0(3, I), AND £(3)
LIE ALGEBRAS BY ANAL YTIC FUNcrlONS

OF p AND J

We begin by defining the £(3) representation in
terms of which we will construct 0(4), 0(3, I),
SV(3), SL(3, R), and other £(3) generators. We con-
sider two three-dimensionaI vectors P and J obeying

It is easy to verify that p~ , J~ obey the same Poisson-
bracket relations as p 4' J 4' so that the above transfor-
mation is in f~ct a canonical transformation. We
denote this transformation by (0, R). Next consider a
finite transformation generated by p 4:

---
p~ = exp <"!::.!)P 4 = p 4' (3.7)

J~ = exp(A .P)J4 = J. + f4t.P.;.o.

We denote this transformation by (A, I). It can easily
be verified that this transformation is also canonical.
A general element of the group £(3) is represented by

J; = exp (8 :-J)J. = R..(8)J.. , By exp (,) .fwe mean the foUowing infinite series

exp (,p) .f- f+ {~.f} + (1/2!){~. {~.f}} + where ~ and f are arbitrary functions of the dynamiW

variables. Here the vector 8specifies the transformation

and R(8) is the real orthogonal matrix corresponding

to a rotation b) an angle 181 -II about an axis in the

direction of 8:
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the canonical transformation (A, R) obtained by

performing (0. R) first and (A, I) next:

(3.8)

(A, R) = (A, 1)(O, R),

p~ = RboPb'

J ~ = Rbo(J b + £bCdP cAd),

If we substitute (3.10) in (3.11) and also use (1.1)

and (3.1)-(3.4), we obtain, after some long but straight-

forward calculations, the following relation:

2Ja = .?Ja{g2 -f~ -2(hf~ + PfJ;)

-2~(hg' -~f2f'.J}

+ 4Pah{g + J2g' + ~f~}

+ 4EabcJbPcf2{g + J2g' + ~f{},

where primes denote diffe-rentiation with respect to 12.

If we multiply this last equation by (~a -J2Pa).

(1 a -:xoP a). and £a.,J .p f and sum over a in the result-

ing three equations. we obtain

fJg + J2g' + ~fJ = 0, (3.12)

!s(g + Jtg' + ~f~) = 0, (3.13)

1 = gZ -f: -2(fJ~ + Jtf,jl) -~(flg' -~f2f~),

-(3.14)

where we have assumed J2 -~ ~ 0. Apart from the
trivial solution h = /a = 0, 9 = 1 (i.e., K = :;i:;J),

we obtain on solving (3.12)-(3.14) the following

functional forms ofh,h, and g: ..,

fJj2) = {~ -j2)(Jt -~tJ}icos {e(j2)}, (3.15)

f2(J2) = f(Pt .I (3.16)2) ~
~ -\ sin {e(j2)},

(j2 -~)

-J2)(j2 -
-

:x:;)l-

~
J2

g(J2) =

We have the following composition law:

(A', R')(A, R) = (A' + R'A, R'R), (3.9)

where R'A is the vector whose components are
R"b).b, (a = 1, 2, 3). These finite canonical transforma-

tions map the entire phase space of £(3) onto itself,
and there is no region in the phase space which is
invariant under all the transformations (A, R).
Further, we may verify that every transformation
(A, R) preserves the restriction JI ~ ~ , which is
implied by (3.4) and the reality of P" and J" .

We are now interested in constructing generators
for 0(4) and other Lie algebras as analytic functions
of p o and Jo. We win find that, in general, these
generators will be real in some regions of the under-
lying £(3) phase space and complex in others. When
we consider the finite canonical transformations
arising from these generators, we can impose the
following requirement: There exists some region in
the phase space, which is mapped into itself under
these canonical transformations; i.e. , given any real
point (P" .J,J in this region, the transformed point
(P~ ' J~) also lies in this region, with p~ and J~ being
real. We then obtain a representation of the group
elements by means of finite real canonical transforma-
tions operating within this region of phase space. As
is seen later, this requirement will, in gGneral, impose
further restrictions on the generators.

Let us begin with the construction of the 0(4)
generators in items of the £(3) generators. We choose
to leave the 0(3) subalgebra unaltered, so that the
first three generators are J 1 , J I, J 3 .The most general
form of the other three generators K" (a = I, 2, 3)

is given by

v,
(3.17)

Here 0(JZ) is an arbitrary function of Jz, and ~ and p
are two real constants. This is the most general solution
of (3.10), since the invariants

Jz + K2 = ~2 + {11 (3.18)
and

(3.19:J.K=IXP

can be assigned independently. Without loss of gener-
ality, we can assume ,8 ~ I~I ~ 0. In analogy with
the quantum-mechanical case, we call the 0(4)
representation with J .K = 0, the "symmetric trace-
less tensor representation. "

We now discuss the above solution in some detail.
We note first that, according to (3.18) and (3.19),
the two invariants are entirely independent of the
function 0. It should therefore be possible to trace
the arbitrariness associated with 0 to a freedom in the
choice of the form of the generators. This is in fact
true. The arbitrary function 0 simply reflects the

freedom to make canonical transformations generated

K,,=hP4+h£4b.,JbPc+gJ4, (3.10)

where h, h, and 9 are functions of J2, to be deter-

mined. Equations (2.6) and (2.7) are automatically

satisfied because of (3.1}-(3.3), whereas if we impose

(2.8), we get a set of first-order differential equationss

involving h, h, and 9 in their dependence on J2.

For this purpose, we rewrite (2.8) in a slightly dif-

ferent, but equivalent, form:

£"bc{Kb, Kc} = 2J". (3.11)

I We follow the method of calculation to be found in H. Bacry.

Nuovo Cimcoto 41A. 221 (1966).
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where Rba is the orthogonal matrix given by (3.6). The
magnitudes of these vectors are thus fixed :

by arbitrary functions .P(I2) of ]1:

I,,-I~ = exp [W)]I" = I",

P" -p~ = exp rW)]PA' (J :1: K)2 = (.8 :1: IX)I,

= cos [2(J2)t~']p "

+ 1 -cos [2(J2)t~,] (J .P)J"

;2

sin [2(J2)t~,] E p J+ 1. ~abc b .
(;2). (3.20)

By a proper choice of the function 4>. we can eliminate

e altogether and write the generators K.. in the form

((132- J2)(jl -:x2)\t
K.= " -}p..

(;Z -~) J
:x.8 - {(.82- ;2)(;Z -IX2) } i

J ~. (3.21)
Lo :xo (;Z -~) ;1

Next we consider the reality properties of K~ and

of the canonical transfomlations generated by K~ .

Since }2 ~ :x~ in the phase space of £(3), we must

choose P'2 > IX~ in order to have some region,

IJI ~ }2 ~ max (IX2, ~,

where K~ is real. To discuss the nature of the canonical

transformations (P ~ , J ~) -(P~ , J~), we first rewrite

(3.21) in the following compact form:

K = { (.8a -}2)(J" -IX2) } i ~J X P X J) + ~ J

(;2 -~) ;1 ;1 ,

+

Therefore, if we start with a point (P 4' ] J with 11' ~
12 ~ max (:xI, IX.;>, then, by choosing an appropriate
canonical transformation in 0(4) of the type (3.25),
we get an image (P~ , 1~) with 1'2 lying anywhere
between the valuess p2 and :x2 (i.e., ;32 ~ 1'2 ~ X2).
However, if P" is real, we also have 1'2 ~ max ( IXi, x~,
and therefore :x2 ~ ~ .

We have then the following result: Given the phase
space of £(3) with a certain '%0 , the generators K" of
(3.21), for ;3 ~ IIXI ~ 1'%01, are real in tht; region
tr" ~ 12 ~ IX2. The finite canonical transformation
generated by] " and K" map this region into itself and
provide a representation of the group 0(4). If
l:xl < IlXoi, the K" are real in the region ps ~ 12 ~ IX~;
however, in this case there is no region in the phase
space which is invariant under the transformation
generated by K". [Alternatively, for every finite trans-
formation generated by Kc, there exist some real
points (P" , l,,) which are carried into points (P~ ' 1~
with complex P~.] As a particular case we see that,
in order to obtain a real representation of 0(4) of the
.'symmetric traceless tensor" type with IX = 0, we
must start with IXo = 0.

Let us now consider the region of the phase space
where the generators (3.21) are not real. The generators
K" become complex outside the region ps ~ ]2 ~ IXI
(with {J ~ I~I > IlXoi), and we do not have areal
realization of any Lie algebra. If, however, we make
an "analytic continuation'. of the parameter ~ to pure
imaginary values. we can generate real realizations
of the 0(3, I) Ue algebra in the region ]2 ~ ps. We
define K~ = iKc and simultaneously put ~' = i~ (with

~' real), and obtain, from (3.21), the following
expression for K~ :

(3.22)

from which we can express Pin terms4 of K and J :

{ (Jt -~ } I (J x K x J) CXo
P = (.8t -J')(Jt -~') Jt + JI J.

(3.23)

, { (J' -.8"}(J2 + :x"'}} l
K = pa ( J' -1Xo"} 4

+ [~ -~ { (P -Pt)(P + IX"'}}~ J
p j2 (JI --x:) J II , (3.27)

which is real for JZ ~ {J" (remember also that

{f' ~ iX~. Since la and K~ now satisfy the Poisson-

bracket relations (2.11 )-(2.13), they generate the

Thus, given real vectors J, p with

,81 ~ 11 ~ max (~I, rT.'J

(and p2 = I, J .p = 1%0), K is real; and conversely,

given real vectors J, K with ,81 ~ 11 ~ max (~I, ~'o)
(and 11 + KI = ~I + ,81, J .K = ~fJ), p is real. The

finite canonical transformations generated by J and K

can be shown to represent orthogonal rotations on

the two vectors J :!: K :

J" :!: K" -J~ :!: K~ = exp (0. J)(J" :i: K,,)

= Rb/J(o)(Jb :!: Kb). (3.24)
--

J" :!: K" -J~ :!: K~ = exp(A .K)(I" :i: K,,)

= Rb/J(:i:A)(Jb :!: Kb), (3.25)

.Since we have obtained an expression for Pin tenns of I: and J.
we can, in all of the present discussion. replace P by (3.23) and thus
obtain realizations of various Lie algebru in tenus of analytic
functions of I: and J. the Reneraton of 0(4).

.The fact that /1" and XS are the maximum and minimum values,
respectively, attained by P under the finite canonical transformations
generated by K can also be seen from the relation

0 = cSP = ~p (15}. , K}J' -P = (J X K) .,)').

and (3.22).
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0(3, I) Lie algebra. The two invariants in this case are

]1 -Ktl = pa -a;tl, (3.28)

J. Kt = p~t. (3.29)

We can evaluate the minimum value attained by ]1
under finite canonical transformation generated by
Kt. Let (P a' la) be the point with a minimum value of
11. Under an infinitesimal transformation generated
by Kt, we have

d(ll) = 2J .dJ = 2Ja{5A .Kt, la} = 25A. (J X Kt).

(3.30)
For ]1 to be minimum, d(J1) = 0, and we then find

from (3.28)-(3.30) that this minimum value is pa.
Thus, under the finite canonical transformations
generated by J and Kt, the region ]1 ~ pa is mapped
into itself and we have a real realization of the group

0(3, I).
The above discussion also holds for the case

a; = «0 = 0, i.e., the generators l. and K; given by

K~ -{1' -.8'}iP. (3.31)

provide a real realization of the group 0(3, I) in the
region]1 ~ pa. We note, however, that if we replace
pa by -pa in (3.31), we obtain a realization of the
0(3, 1) Lie algebra, real over the entire phase space
of £(3). In this case, the entire phase space is mapped
into itself under all finite canonical transformations
generated by J, or Kt = {1. + pa}ip G .

To summarize, then, starting with an £(3) realiza-
tion with a given «0 and with the parameters p, ~
obeying p ~ I~I ~ 1«01, la and KG of (3.21) generate
a real realization of the group 0(4) in the region
pa ~ JI ~ ~.. Outside this region, the x. are complex.
One can analytically continue ~ to ~t = ;~ with ~t

real, and obtain K~ of Eq. (3.27), which together with
lG generate a real realization of the group 0(3, I) in
the region JI ~ pa. If ~ = «0 = 0, we also have a

realization of the group 0(3, I), real over the entire

phase space.
We conclude this section by considering the

"contraction " of the 0(4) generators of the equation

(3.21) to yield new generators of £(3). For this
purpose we set

obtained from (3.32) and (3.21) in the limit .8 -00,
provide a realization of the £(3) Lie algebra. Thus,
starting with a realization of £(3) with the generator
Pa, }a and invariants pi = I, J .p = 0C0, we have
exhibited a realization of £(3) Lie algebra by p a' }a
with arbitrary value ~ for J .p (and pi = I ). It must
be noted that since the value of the invariant J .Pis
changed, (3.33) does not represent a canonical trans-
formation generated by any function of J or P. It may
be seen that the minimum value reached by]l under
finite canonical transformation generated by Pis ~I.
Hence, if 1«1 ~ l«el, the region }1 ~ «1, where Pa is
real, is mapped into itself by the finite canonical
transformation generated by P or J, and thus we
obtain a real realization of £(3) in this region. On the
other hand, if 1«1 < l«el, for every finite canonical
transformation generated by P, there are some real
points (P .' J.) which are carried into image points
(P~ , J'J with complex p~ .

4. REALIZAnoN OF SU(3) AND SL(3, R) LIE
ALGEBRAS BY ANAL Y11C FUNcnONS OF

PAND}
In this section we discuss the realization of SU(3)

and SL(3, R) Lie algebras from the generalized envel-
oping algebra of £(3). The 0(3) subalgebra of SU(3),
SL(3, R), and £(3) will be taken to be identical, i.e.,
three of the generators of SU(3) and SL(3, R) are
chosen to be Ja (a = I, 2, 3). The other five generators
of SU(3) and SL(3, R) (i.e., the symmetric traceless
tensors QGb and Q~. ' respectively ,) are to be determined
as functions of P and J.

It is known that, in general, the unitary irreducible
(matrix) representations of the group SU(3) are not
only reducible with respect to 0(3), but the same
0(3) representation may appear more than once.6
However, for the special class of "completely sym-
metric tensor" representations, there is no such
multiplicity, and only states with the same parity
occur. We restrict our considerations to poisson-
bracket "symmetric tensor realizations" of SU(3) and
SL(3, R) with even parity [i.e., QGb(P) = Qa.( -P)
and Q:.(P) = Q~.( -P)] from amongst the elements
of the generalized enveloping algebra of £(3).

We show below [Eq. (4.26)] that, in any real repre-
sentation of the group SU(3) with the generator J. I
Qa. , the minimum value of }1 is always zero. A similar
result also holds for SL(3, R). From the examples
discussed up to now, we can then conclude that we ~ay
restrict ourselves to an underlying £(3) realization
with

~ == pJSA (I ~ a ~ 3), (3.32)

and take the limit p- 00, keeping ~ fixed. If we

substitute (3.32) in the Poisson-bracket relations

(2.6}-(2.8) and take the limit p- 00, we find that

JA and JS A satisfy (2.1}-(2.3), required of the generators

of £(3). Thus JA and

{(1' -~~ } t [ ~ «0 {(1' -«~ } t
JJS.== ~ p.+ Ji-Ji ~ JA,

(3.33)

J.P=IXe=O; PI=I. (4.1)

.See. (or iDstaDCC. G. Racah. Rev. Mod. Phyl. 21.494 (1949):
V. 8ar1lD8DD aDd M. MOlhiDIky, Nuci. PhYl.13, 177 (1961).



LIE ALGEBRAS

tions to the case when Q... is of the fonD

QG6 = f(P GP6 -id...) + g[(J,..16/)1) -ida6J. (4.11)

The functional dependence of f and 9 on )I is to be

deternlined from the Poisson-bracket relation (2.19).
We deduce from (2.19) the essentially equivalent

relation

If the symmetric traceless tensor Q... is to be con-
structed from the vectors P and J satisfying (4.1), then
the most general form for Q... with even parity
Q..b(P) = Q..b( -P) is given by

Q"b =10. {p..p. -1!S...} + go. 1,,1.

hd.{QaA, 

Qe4} = 4(}a..J. -tJc,Jm -tJ..,J. (4.12)

and substitute (4.11) in (4.12). If we also use Eqs. (1.1),

(3.1}-(3.3), and (4.1), we find, after long but straight-
forward calculations, that

4IJmcJ. -(IJc.Jm + tJm,Jc)

= -If(f' + g')tJm.J.

+ [4f(J't](J'fg' -fg + g~J"J.,J.
Z

+ { if(f' + g') +ll- ~ -2fg'
};1 p

X (IJc.Jm + tJ..,Jc) + f(2fg' -ff')

X {PmP.P. + (P,.Jc + JmP.)J.}, (4.13)

where primes again denote differentiation with respect
to JI. Equating the coefficients of the various terms,

we find that (4.13) is satisfied if and only if

f(f' + g') = -3, (4.14)

f(f' -2g') = 0, (4.15)

and

where

f= !0 cos 20 + 2ho(JI)i sin 20, (4.8)

9 = go -fo sinl 0 + ho(JI)1 sin 20, (4.9)

h = ho cos 20- f/0/2(JI)I] sin 20. (4.10)

We now choose 0 = I tan-1[2ho(JI)I/fo] so that h = 0,

and (4. 7) then shows that we can restrict our considera-

g(g -1) = J1. .(4.16)

It is possible to find a solution of the three equations
(4.14}-(4.16) for the two functionsf, g:

f= <PS -4J')i. (4.17)

9 = i<PS -4J')i .i: i.8. (4.18)

where .8 is some arbitrary constant. From (4.11},
(4.17). and (4.18). we thus obtain

Qab = <PS -4J')i[p .Pb + (J..Jb/2J1) -IfJab]

.i: i.8[(J..J./J1) -IfJGb]. (4.19)

This solution for Q.. obeys the Poisson-bracket
relation (2.19). The parameter .8 and the ambiguity
of the sign in (4.19) are related to the quadratic and
cubic invariants [cf. (2.25). (2.26)]

J..Ja + lQGbQGb = 1.8'. (4.20)

tJj {3JaQa.J. -QabQkQ..J = .i:(.8'/3.fj). (4.21)

As mentioned in Sec. 2. we note that the cube of the
quadratic invariant is equal to the square of the cubic
invariant.

The generators QGb in (4.19) "are real in the region
]1 ~ i.8'. In order to discuss the finite transformatioDI

+ ho{(J x P)aPb + Pa(J X P)b}' (4.2)

where !0 ' go, and ho are some functions of JI to be

determined. The absence of a term proportional to

(J x P)a(J X P)b -!J1dab

=ac4b.rlcP~.Pt -V2dab (4.3)

in (4.2) is no loss of generality, since such a term can

be re-expressed in terms of dab' J..Jb' and P aPb' which
are included in (4.2). This can be seen immediately, if

we make use of the identityacab.t 

= ~ab~C.~4t + ~a.~ctdab + ~atdcb~.'.

-~abdc/J4. -~a.~cbd4t -datdc.~4b .(4.4)

In order to determine the three functions !0 , go, ho we

must impose the Poisson-bracket relations (2.19).
[The relations (2.16}-(2.18) are automatically satisfied

with the choice (4.2).] However, it is possible to

simplify Qab first by means of a canonical transforma-
tion of the form (3.20), leaving Ja invariant. As we

show below, a proper ehoice of the function ~(JI) in

(3.20) can eliminate the term proportional to

(J x P)GPb + (J x P)"P .

in (4.2). For this purpose, we rewrite (4.2) with P G' I.

replaced by P~ ' I~ :

Qab = fo(P~P~ -t~ab) + go«J'.J~//') -t~ab)

+ ho{(J' X P')"p~ + (J' X P').P~}, (4.5)

where P' and J' are given by (3.20), with J .P, i.e.,
--

J~ = exp {~/')}JG = J.,
--

P~ = exp {~/')}Pa,

= cos 8Pa -[sin 8/(/')i](J x P)., (4.6)

where 8 = 2(J1)i d~(J1)/d(J1). If we substitute (4.6)

in (4.5), we obtain

Qab = f(P aPb -!~ab) + g{\J..1b/J1) -!dab}

+ h{(J X P)aPb + (J X P)bPa}, (4.7)
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generated byJ..and Q..b , we first evaluate the maximum

and minimum values attained by ]1 under these

transformations.

Let us evaluate the minimum value of J2. If we

just use the Poisson-bracket relations (2.17)-(2.19),

we see that. under the finite canonical transformations

generated by J.. or Q..b' these quantities go over into

certain linear combinations of themselves. In fact. J..

and Q... transform according to the eight-dimensional

adjoint representation of SU(3).7 To exhibit these

transformations we introduce three antisymmetric
Hermitian (3 x 3) matrices A.. (a = r, 2, 3):

(0 0 0) (0 0 -I

)Al = ; ° 0 I, AI = i 0 0 O .

° -I ° I 0 O

A' = : (4.22)

This proves the statement that in any realization ot
SU(3), the value 12 = ° is always attained and this is.
of course, the minimum value.

Let us next evaluate the maximum value of 12. Le,
(P a' la) be the point where 12 is maximum. We first
perform an orthogonal rotation (3.5), generated by
la, which leaves 12 unchanged, such that

11 = 12 = 0; 13 = (12)!. (4.27)

Now under an arbitrary infinitesimal transformation

generated by Qab ,
~

la-exp(b;'bC.Qbc:)la, (4.28)

where the ~;'bc: are arbitrary , we must have

~(JI) = 0. (4.29)

Using the Poisson-bracket relation (2.18), we obtain

6(JI) = 2Ja(6lJ = 2Ja{b;'bCQbc: , la}

= 2Ja[fbadQtlO + f_Qbtl]b;'bc, (4.30)

SO that (4.28) is satisfied if and only if

la(fbadQIlc + foatlQ~ = 0. (4.31)

If we use (4.27) and the fact that Q..b = Qb.. , Qcc: = 0,
in (4.31), we obtain the following form for Q..b:

Qu = Q21 = -lQ33 = q; Q..b = 0, a ~ b, (4.32)

where q is some constant. Using the special forms of
1.. and Q..b' as given by (4.27) and (4.32) in (4.20)
and (4.21), we get the following two equations in 12
and q:

}1 + 3q2 = !P, (4.33)

-]2q +q" = :f:itfJ3, (4.34)

with the solution ]2 = 0, q = :f: !.8, or }2 = !.81,
q = :f:i.8. The fonner solution corresponds to the

minimum value of }2 [note that ( 4.29) is also satisfied

when ]2 is minimum], which we already derived

earuer, as the latter solution corresponds to the maxi-

mum value of ]2.

It is thus seen that the maximum and minimum

values of }1 are ifJ' and 0, respectively, which are just
the boundaries of the region where Qab are real. \\'e

therefore conclude that not only are the Qab real in

the region ° ~ ]2 ~ ifJ' of the £(3) phase space, but.

in facto the finite canonical transformation generated
by }a, Qab carries this region into itself and provides a

real ~alization of the group SU(3).

We conclude this section by a brief discussion of the

realization of the SL(3, R) Lie algebra. We see from

(4.19) that Q.. become complex in the region }2 > !pI,
We can, however, redefine the generators Q:b = iQ~D
and simultancously analyticaJ1y continue .8 to .8' = lP

° 1 0'

-I ° °

, ° ° 0;

and the Hermitian symmetric traceless matrices AH:

AH = t(A-A' + A'J\.) -I~Hl, (4.23)

of which only five are linearly independent. Together ,

A- and AH form a basis for traceless Hermitian

(3 x 3) matrices. Given the variables J a' Qab' we foml

the Hermitian matrix

.4. = JaA. + iQGbAIJb, (4.24)

Now let U be any unitary unimodular matrix. The
matrix A' = UAU-l can also be expanded linearly in

terms of AG and AH, i.e.,

A' = UAU-1 = J~AG + tQ~~.', (4.25)

where the coefficients J~ and Q~b are linear combina-

tions of JG and QIJb ' By choosing all possible matrices

U, we get precisely all those linear combinations

J~ ' Q~b that are obtained by pcrfomling all possible

finite canonic.al transformations generated by JG and

QIJb on themselves. Now, given any A, we can choose

a U such that A' is diagonal. In that case JG vanishes,

since A- are antisymmetric and AIJb are symmetric

matrices. Thus, starting with any value of J- , QH ,

there exists a particular transformation generated by

J. , QIJb which takes

J. -J~ = 0. (4.26)

, For 81Iy Lie group. the perators transfDrm aecordiDI.to Ihe

adjoint ~presen&aUoQ 0( Ihe group; (or S U(3). Ihil ii the octet IK
eilbt-dimensiooaJ represenllUoD. The matrices A.. A.. are tbc
H~itian geaerators 0( Ihe three-dimensional representatjoQ 0(
S~3). The FDCI'aton A. 01 tbe 0(3) subgroap (OneIpgGd to Ih.
IPD-I repR'.atioQ 0( 0(3), anci are bere ~ iQ tbe
CUt-.a (orm.
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(with ,8' real) to get

= (.8,2 + 4J2)l{p..Pb + l(J..Jb/;t) -l,}..b}

::t: !.8«(J..Jb/J2) -i~..b).
Q~b

(4.35)

J" and Qab now obey the Poisson-bracket relations

( 2.22)-(2.24) corresponding to the unirnodular real

linear group in three dimensions, SL(3, R). The two

invariants of this representation are

bracket relations

{J..b,Jcd} = ~..c-'b4 + I}~... -,}".,J"" -~...,JbC' (5.1)

{Job' Pc} = ,}Jb -dJ5' (5.2)

{P..,Pb}=O. (5.3)

We will restrict our discussion to the case when the
totally antisymmetric tensors

H.bc = P,Jbc + PbJc.. + P .Jab (5.4)
and!Q ' Q' = _1~'2

.ab ab :[I"1"1,, (4.36)
and

Gabc4 = Ja~.d + Ja..Idb + J~b. (5.5)

identically vanish. For n = 3, the constraint (5.5)

is empty, whereas the constraint (5.4) reduces to
J .P = 0, which implies that the "helicity" is zero.

We also choose the normalization such that

pi = I. (5.6)

t,,!3 (3JaQ~bJb + lQ~bQ~cQ~) = =f~/3J3. (4.37)

The generators Q~b are real over the entire region

]2 ~ 0.
Let us now evaluate the limiting values attained

by l2 under finite canonical transformations generated

by la and Q~b. Let (P a' la) be the point where l2 is

stationary and let us first perform an orthogonal

rotation generated by la (leaving l2 unchanged) such

that ll' l2, l3 are given by (4.27). By fol1owing a

strictly similar argument as was used to obtain the

relation (4.32), we obtain in this case

which is always permissible since the multiplication
by a constant does not change the Poisson-bracket
relations (5.1}-(5.3).

The generators Jab and K,. of O(n + I) obey the
Poisson-bracket relations

{Jab' Kc} = ba.Kb -r}bcKa, (5.7)

{K,., Kb} = Jab, (5.8)

and the Poisson bracket of J ab with J cd is given by ( 5.1 ).
From (3.21), if we set ~ = iXo = 0, we can immedi-

ately write down the gene~tors K,. in terms of p a and
Jab (I ~ a ~ n):

Q~l = Q;2 = -lQ~ = q', Q~b = 0, a ~ b, (4.38)

where q' is some constant. If we use the special forms
of JII and Q~b as given by ( 4.27) and (4.38) in (4.36)
and (4.37), we obtain the following two equations in
}2 and Q':

JI -3q'1 = 1.8'1, (4.39) K.. = (P" -p)lp ClY (5.9)
whereJlq' + q'S = ::I:npS, (4.40)

with the only real solution JI = 0, q' = ::i:1P' .
Hence we conclude that J.. and Q~b generate real

finite canonical transformations mapping the entire
phase space into itself and providing a realization of
the group SL(3, R).

]2 = VG,,1... (5.10)

and fJ iJ related to the invariant

]2 + KI = }JG,,1G& + K..KG = tJI. (5.11)

By direct calculations, it may be verified that the

Poisson-bracket relations (5.7) and (5.8) are satisfied

and therefore JGb and K.. do serve as generators of

0(11 + I). Of course, the form of K.. can be changed,

by finite canonical transformations generated by some

function of ]2, to

Ka = (pI

The generator Ka is real in the region )2 ~ ,82. For
)2 > p2, Ka becomes pure imaginary. In this region

K~ = iK" = (j2 -p2)ip" (5.13)

and )"ci generate a representation of the pseudo-
orthogonal group O(n, I). The generators K~ =

()2 + ,82). p. and) a& generate a representation of

s. GENERALIZA nON TO n DIMENSIONS

So far we have restricted our attention to the reali-
zation of some Lie algebras in terms of the elements
of a generalized enveloping algebra of £(3). In this
section, we wish to make some comments about its
generalization to n dimensions. There are some
special features of the £(3) and 0(4) algebras which
do not generalize to higher dimensions. However, the
symmetric-tensor-type realizations permit an imme-
diate extension to arbitrary dimensions.

We start with "'e symmetric-tensor realization of
£(n), (n ~ 3), with the generators p a' Jab' [J"b =
-Jba; a, b = I, 2, ..., n], which obey the Poisson-
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O(n, I) which is real over the entire phase space.

[The Poisson-bracket relations of Ko and 1Gb are

similar to (5.7) and (5.8) except for a change of sign in

(5.8).]
The SU(n) generators 1Gb, QGb obey the Poisson-

bracket relations

{Jab' Qc4} = + ~acQbd + ~adQ.b -~CbQad -~bdQ... ,

(5.14)

{Q..., Q.J = ~..,J... + ~...,JbC + ~~ad + ~..elbd. (5.15)

In analogy with (4.19) we can again write down Qcab

in terms of p. and J cab :

6. CONCLUDING REMARKS

We have discussed the realization of certain Lie
algebras in terms of the generalized enveloping alge-
bras of certain other prescribed Lie algebras. We now
make a few comments on the realizations of Lie
algebras in terms of canonical variables. Such cOn-
structions are important in connection with explicit
realizations of the symmetry groups of Hamiltonian
systems as well as in the noninvariance-group descrip-
tion of dynamical systems. The possibility of identi-
fying a dynamical system (with particular emphasis
on the quantum-theoretic formulation of particle
physics) with the generalized enveloping algebra of a
suitable Lie algebra has been discussed elsewhere by
one of the authors.8 The problem of the recovery of
the canonical variables for the system is also an
essential dynamical problem.

To give an example, consider the special, familiar
case of the Kepler problem. The generators of the
Euclidean noninvariance group £(4) are, in this case,

given by.
where the parameter .8 is related to the invariant

JG6=..G..J. (a,b,c=1,2,3), (6.1)

JIJ4=B; (a= 1,2,3), (6.2)

p G = KG (a = I, 2, 3),

and

p. = Sf,

where

)1 + 1Q...QG6 = 1(1 -,,-l)Ps (5.17)

and )1 is again given by (5.10). From the structure of

QG6 in (5.16), it is evident that the Poisson-bracket

relation (5.14) is obeyed. It is expected that (5.15)

also holds.

The generators Qab are real in the region )1 :s: iPS ,

and together withlab provide a real realization of SU(n)

in this region. For II > iPS. QG6 of (5.16) become

complex.
Defining Q~ = iQG6 and choosing .8' = i.8 (p'real)

as before, we obtain from (5.16) the generators of a

noncompact group SL(n, R):

Ja=EabcqbPc,

B~ = [( -2H)lq cos {( -2H)1(q .p)}

-(q .p) sin {( -2H)1(q .P)}]Pa

+ [(l/q) sin {( -2H)1(q .p)} ]qa ,Q.;. = (ft" + 4J')i(p.p. -~)

:1: tp (~ d.. -~ )n J' (5.18)

[Q~ and J.. obey similar Poisson-bracket relations as
(5.14), (5.15), except a change of sign in (5.1S).] This
realization is real over the entire phase space JI > 0.

It may be noted that for "symmetric tensor"
realizations of 0(11 + 1) and SU(1I) and similarly for
0(11, 1) and SL(1I, R), the quadratic invariants (5.11)
and (5.17), respectively, essentially detemrine the
realizations, except for the automorphism

KG = ( -2H)-i[(q .p)PG -plqG + (e/q)qG].

Sf = -( -2H)i(q .p) sin [( -2H)i(q .p)]

+ (1 + 2Hq) cas [( -2H)i(q .p)],

q = (qaqa)i; H = IPaPa -e/q.

Given these ten generators, one could construct the
primitive dynamical variables. These points are dis-
cussed in more detail in a paper by two of us.t

We only mention that such a construction yields

.Eo C. G. Sud&nhan. "CUrTeou. Alaebru and Dynamical Sy!"
terns.'. invited paper at the Eastern Theoretical Physics Conference,
Stony Brook. Lonlllland. New York. 1965. al

.Eo C. G. Sudanhan and N. Mukunda, in Lect",e.r ill TlIeo'~~~)PlI,,1u (UDivenity of Colorado ~ Boulder. Colorado, 1 ,

VoL VIII-B. D. 407,

J..-J.., K.- -Ka, a..- -Qat, (5.19)

wbjch leave all cvcn-degree invariants unaltered, but

cbaage the signa of all odd-dcgree invariants.
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expressio~s which a~e undefined (s~gu1a.r) when the
Hamiltonian H varushes. The HamiltOD18n H only
plays an a~iary role in the construction of the
canonical vanables. We could cqually weU write down
some functions of these ten generators which satisfy
r~nonical Poisson-bracket relations. In another publi-

cation,11 one of the authon has discussed the con-
struction of n pairs of canonical variables from the
generalized enveloping algebra of the classical groups
SU(n + I) and O(n + 2).

i. N. Mutunda. I. Math. Pbyt. I. 1069 (1967).


