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We show how to do three things: to construct a relativistic Lie algebra whose irreducible representations
contain infinite sequences of particles with spins and isospins which can be correlated as in the isobar
spectrum of strong coupling theory; to obtain a mass spectrum for such isobars from an associative al~e.
bra structure; and to show how such an associative algebra has an underlying structure in terms of a
finite-parameter Lie algebra.

(4)= i{gva17/.L -g/.La17v}

(5)=0

[J tJ.1!' 770"

[77jl , 771!

[11jJ. ,FIJ]=O (6)

The ten elements PjJ. , JjJ.IJ are identified with the
generators of the Poincare group. The space in-
version acts as an outer automorphism on the
Poincare algebra. It is extended to act on all of
El by defining 11 jJ. to be a pseudovector .

We now look for particle-like unitary irredu-
cible representations of 1..!1 and the parity opera-
tor. The four independent invariants of L'I may
be chosen to be

Ql = pJ.LpI.L Q 2 = T]J1.11 u Q3 = PIJ.77IJ.

(7)
Jl.IIA(jQ4 = E FJl. IlIIJA(j

As long as 1JJl. is not represented by zero, the
Pauli-Lubanski operator If(y If'(j, where 11'(j =
= tE(jAJl.IIFAJJl.II, is not an invariant of 1!1' Hence

every faithful unitary representation of 1!1 con-
tains a spectrum of representations of the Poin-
care algebra with various spins (and a common
mass :). The invariant Q3 is pseudoscalar and un-
less it vanishes, it will give rise to states of
both parity in a representation of 1!1 and the pari-
ty operator. To avoid this doublLng we investigate
only representations with Q3 = 0. Ql = pJl. PJl. is
the (degenerate) squared mass of the multiplet
and is chosen positive: normalizing it to +1, FJl.
lies on the future time-like unit hyper boloid,

To enumerate the spin that appear, we exa-
mine the (ideal) states with four momentum Po =
= +1, E = 0: all other states are obtained from

these bv Lorentz transformation. The corres-

The problem of understanding the spectrum of
particle multiplets with their characteristic spins,
parities, internal symmetry labels, and masses,
within a group-theoretical framework, has been
of much interest during the past few years.
Attempts at a direct relativistic generalization
[1] of the non-relativistic SU(6) theory encounter-
ed certain basic difficulties [2] and have been
largely abandoned. In this letter we present a Lie
algebraic structure which incorporates relativity
and leads in a ,s:imple manner, to some general
features of the hadron spectrum, including the
correlation between spin and internal symmetry
as well as the gross features of the mass spec-
trum. It is possible that the question of mass
splittings in supermultiplets is somewhat different
from that of generating a spectrum of particle
states with the proper sequence of spins and inter-
nal symmetry labels. For clarity of presentation
we discuss first the case of mass degenerate
multiplets, treating in turn three different
schemes. We come back to the question of the
mass spectrum in the latter part of this letter .

JVass deg.enerate 1llllltiplets. Consider the
fourteen-parameter Lie algebra 1!1 generated by
PJl.'JJl./l' 11Jl. (Jl. = 0, 1, 2,3), with the commuta-
tion relations

[JJl./l,J07] = i{g/laJJl.T -gIJ.aJ/lT +g/lTJaIJ. -gIJ.TJa/l}

(1)
[JJl./l, Pa] = i{g/laPJ.J. -gJ.J.aP/l} (2)

Pj.L, p/) = 0 (3)
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Ql=P.UP.u;

where

Q3=~~:(11)

T. -77 .pIL
( 12

)l- ILl

Once again, we choose Ql = +1 and let PIL lie on
the unit time-like future hyperboloid. To avoid
parity doubling in the representation, we choose
Q3 = 0, forcing the pseudoscalars Tj to vanish.
This time, the stabilizer Lie algebra for the
(ideal) state vectors with Po = 1, E, = 0 is gene-
rated by the elements Ij, l and J!.j' which obey the
commutation rules of the Lie algebra T(9) x
x{ SU(2) 0 SU (2) } .The representations of this
algebra have been studied recently [5,6]. Three
interesting kinds of representations may be iden-
tified:
(i) The sequence with equal spin and isospin, I =
= S = all integral or all half odd integral values .
Each I = S multiplet appears just once. This se-
quence is familiar from symmetric pseudoscalar
meson theory [4].
(ii) The sequence with the spin S taking on all
integral or all half odd integral values; for each
S, I =1 S -n I, I S -n 1 + 1, ...s + n, where n is any
integer or half odd integer characteristic of the
representation. (Representations of type (i) cor-
respond to n = 0) .The case n = t corresponds to
the strong coupling sequence for strange hyperons
[6]. In this case again each spin-isospin multi-
plet occurs just once. One also has representa-
tions of this type with I and S interchanged. (iii)
The sequence with I and S varying independently;
S taking on all integral or half odd integral
values, and independently all I values being inte-
gral or half odd integral. There is here no corre-
lation between spin and isospin. A simple way of
generating this kind of representation is to take
for J!.ILj the product of a pseudovector aJ.L and an
isovector bj.

We have thus exhibited a finite-parameter Lie
algebra En containing the Poincare algebra, and
with unitary irreducible representations which re-
produce the isobar spectrum in the strong coup-
ling limit of the symmetric pseudoscalar theory.
The extension from isospin to SU3 is obvious. In
accordance with O'Raifeartaigh's theorem [2],
there are no mass splittings ~ such a model.

Mass splittings and Lie algebras. To generate
an algebraic framework within which we could
obtain mass splittings, we have to construct a
richer structure than Lie algebras. We observe
that in the strong-coupling approximation to me-
son theory, the spin-isospin SPC'Ctltllll is obtained
in the strong coupling limit, but the masses are
no longer degenerate for finite coupling strength.
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ponding stabilizer Lie algebra ("Little Group"
Lie algebra) is generated by .:!. and.!1. (since 110
vanishes on these states by virtue of Q3 = 0).
This is isomorphic to E(3), the algebra of the
three dimensional Euclidean group. The unitary
irreducible representations of E (3) are well
known; the two invariants of E(3) are Q2 and Q4,
evaluated for E. = 0. Assuming the representation
is faithful, 1] Jl is not identically zero; hence Q2
is negative and may be normalized to -1. Q4 is
the "helicity" of the E(3) representations; if it is
zero, the spectrum consists of all integral
values of the spin, from zero to infinity. In any
case, these irreducible representations of El con-
sist of an infinite sequence of particles with equal
mass and parity, and with spins starting at a
value determined by Q4, and going up in integral
steps. Each spin appears no more than once.
This spectrum for half odd integral spins, is thus
reminiscent of the isobar spectrum in the strong-
coupling limit of the static neutral pseudoscalar
meson theory [ 4].

Maintaining the mass degeneracy, we can add
an internal symmetry to this model in a trivial
way by means of a direct product structure. In
the isospin case, for example, we introduce six
generators Ij, Fj (j = 1,2, 3), commuting with all
the elements of :Gv and obeying among themsel-
ves the com!nutation relations of the algebra of
SU(2) 0 SU(2), T(3) x SU(2), or SL(2,c). Repre-
sentations of El and the generators Ij, Fj are ob-
tained as direct products of a representation of
El and one of Ij, F j .In no representation of this
type will there be any correlation between the
spins and the isospins. It would be much more
interesting to obtain an algebra including internal
symmetry, such that in at least some of its re-
presentations there exist definite correlation be-
tween the spins and isospins of the particles, as
in the strong coupling limit of the static symme-
tric pseudoscalar theory.

To this end, we consider the Lie algebra En
made up of the twen~y-five elements PJl' JJlIl' Ij ,
1T Jlj (Jl = 0, 1, 2, 3; J = 1, 2, 3); the only non-
vanishing commutators are (1), (2) and the follow-
ing

[Ij' Ik] = i 7kZIZ (8)

[Ij'71I.J.ll] =iEjlU71I.J.Z "

[JI.J.11'71akJ = i{glla71I.J.k -gI.J.a71111?}. (10)

71 I.J.j forms an isovector pseudovector, To deter-
mine the spin-isospin spectrum of a representa-
tion we start from the independent invariants of

illI:
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sequence of them. We require M to obey the fol-

lowing:

-iM[1TJ.J.j M, PA ]M = bE jklM {lk, 1TJll }PA M +

(15)
+a M {JJ1.{3, 1Th FA M + a {J{3y, FJ.L } 1Tf pYp>.

where a and b are two real constants and { , } de-
notes the anti-commutator. By direct computation,
we deduce from (15):

-iM[1TILj'M]M= bEjkl M{lk' 1TILl}M +

{3
+ a M{J /.L(J, 1Tj M + a{Jf3'Y, PIJ. } 1T jP'Y (16)

and
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The meson sources have matrix elements be-
tween these states of different mass [7]. fu the
present case we should require that the opera-
tors :ff.j perform this function in the frame in
which the spatial momentum of the isobar is zero.
We have to consider a relativistic transcription
of this result to allow 1T !1.j to connect states with
non-zero spatial momentum. Since the zero
three-momentum states essentially determine
these matrix elements, the natural method of
implementing this transcription is to consider
1T !1.j to commute with the four velocity M-l p !1.
and fail to commute with M in a manner which
is completely determined by the matrix elements
of the operators between zero three-momentum
states.

Accordingly we consider an algebra which in-
cludes the elements P!1. , J !1.lI, 1T!1.j, Ij and Mwith
the restriction that M-IP!1. commute with 1T!1. 0.
Following Werle [8], this can be written in tfiis
form:

(17)T.=1T.PJ1.-0J -J1.J -

We may further show that in virtue of (17), the

element

FI1. 1Tl1.jM -M1TVjFI1. = 0 (13)

This relation goes beyond the structure of a Lie
algebra, as does the relation

FI1. FI1. -iYf2 = ° (14)

To (13) and (14) we add (1), (2), (3), (8), (9), (10)
and the com!:!:lutativity of FI1. ' J 11. v with Ij. From
(14) follows the commutativity ofM with FI1. , JI1.V,
Ij. We also require the components of 1Tl1.j to
commute with one another. At this point we are
dealing with an associative algebra g( generated
by the twenty six elements FI1. ' JI1.V, 1Tl1.j, Ij , JW
modulo the commutation rules and nonlinear rela-
tions listed above.

For states at rest, 1: = 0, and we may choose
F o = ;W. The relation (13) states that acting on

these states, 1Tl1.j reproduces states at rest. Once
again we consider the stabilizer algebra of these
states. It is generated by the elements :!, 1Tl1.j and
4 .Since for the algebra sJ{ the pseudoscalar Tj =
= FI1. 1T /,lj may be chosen zero without f,ear of con-

tradiction, we do so and avoid partity doub~ing.
Then the stabilizer algebra is generated by .:!, !!j
and Ijo and this is isomaorphic to the Lie algebra
of T(9) x jSU(2) 0.; SU(2)}. We have already noted
the kinds of spin-isospin spectra that can be ob-
tained from this algebra. It is to be noted that
this spectrum has been obtained here \vithout
further specification of the mass operator beyond
(13).

Having obtained the spin-isospin spectrum, \ve
impose additional nonlinear relationships to ob-
tain a suitable mass spectrum. These relations
may be chosen in such a way that Ti = ° is a con-

z = M -a II' TI'O" -b I.I.
0" J ) (18)

IV -.! M -1 E p AJ /.LIl0" -2 O"AJ.L II

commutes with all elements and must be represen-
ted by a number JWo in every irreducible repre-
sentation of the algebra Stl (in which (17) holds).
We thus deduce the mass formula

JW = 1 vI +a52 + bl2 (19)
o

where 12 =.?(:)+1) and52 =('5((3+1) are the eigen-
values of the squares of isospin and spin.

The restriction to isotopic spin is of course
for convenience in illustration. One can general-
ize the above construction to incorporate 8U(3) as
the internal symmetry, and choose a non-linear
relation analogous to (15) so as to lead to a mass
operator showing spin dependence, the octet type
symmetry breaking, and 8U(3) representation
mixing. The strong coupling spectrum in the
8U(3) case is also known [9].

Application to 111(',~Ons. In a similar frame-
work, using an associative algebra with certain
non-linear relations postulated, one can arrive at
a mass squared formula for the mesons. At the
isospin level, such a formula reads:

.'12 = .'1~ (1",8U(3)) +a 5(5+ 1) -bl(l+ 1) (20)

Here a and b are fixed constants characteristic of
the algebra, \vhile .'1~ contains the dependence on
hyperchar!?;e 1. and the 8U(3) representation labels
(viz, octet, 27-plet, etc.). To compare \vith ex-
periment, we tentatively choose b ::: ~a ::: 0.1415

(GeV)2,
The ", p, A2, 1], 1~, 8(1930) and U(2380) me-

sons can be treated as one "multiplet" under this

~n~
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P.u =MR.u (R.UR.u= +1) (22)

we obtain the algebra stl. Thus while the algebra
stl is not itself a finite parameter Lie algebra, it
can be simply generated from a finite parameter
Lie algebra Ell.
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mass formula, with Y = 0, SU(3) octet.. The spin-
isospin quantum numbers for these mesons are
not all established but we take them to be (5,/) =
= (0,1), (1,1), (2,1), (0,0), (2,0), (3,1) and (4,1)
respectively. We use the pion mass to fix M~,
which gives M~ ~ 0.30 (GeV)2. We then predict
the squared masses of the remaining mesons, in
the order listed, to be 0.58,1.74,0.30,2.03,3.5
and 5.8 (GeV)2. The corresponding experimental
[10] values are respectively 0.58,1.75,0.30,
2.02,3.7 and 5.7.

The Y = +1, SU(3) octet mesons K, K*(891),
K~(1400), and K*~800) .can be grouped together,
WIth a common Mo .Usmg the kaon mass, we
find now M~ ~ 0.35 (GeV)2. We then predict the
squared masses of the K*'s listed above to be
~ 0.81, 1.99 and 3.6 (GeV)2; this is in fair agree-
ment with experimental values which give respec-
tively 0.79, 1.99 and 3.4.

The consideration of a mass formula with a
more specific dependence on Y and SU(3), and
which allows SU(3) representation mixing, will be
taken up elsewhere .

Remarks. In the construction of algebras
leading to a mass spectrum, we have generated
an associative algebra g{ with an infinite number
of elements. This algebra Is not a finite param -
eter Lie algebra. It is possible, however, by a
factorizatiQn process, to provide a simple under-
lying structure in terms of a finite parameter Lie
algebra, as follows: Consider the twenty-five
parameter Lie algebra En generated by R )1., J)1.11 ,
Ij, 1T)1.j, write

M = Mo + a Va V a + b 44

(21 )
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v = t EaAJ.LvRA JJ.LV

where Mo, a, b are constants. If we now construct

P/L according to

O)f\A


