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We show how to do three things: to construct a relativistic Lie algebra whose irreducible representations
contain infinite sequences of particles with spins and isospins which can be correlated as in the isobar
spectrum of strong coupling theory; to obtain a mass spectrum for such isobars from an associative alge-
bra structure; and to show how such an associative algebra has an underlying structure in terms of a

finite-parameter Lie algebra,

The problem of understanding the spectrum of
particle multiplets with their characteristic spins,
parities, internal symmetry labels, and masses,
within a group-theoretical framework, has been
of much interest during the past few years.
Attempts at a direct relativistic generalization
[1] of the non-relativistic SU(6) theory encounter-
ed certain basic difficulties [2] and have been
largely abandoned. In this letter we present a Lie
algebraic structure which incorporates relativity
and leads in a simple manner, to some general
features of the hadron spectrum, including the
correlation between spin and internal symmetry
as well as the gross features of the mass spec-
trum. It is possible that the question of mass
splittings in supermultiplets is somewhat different
from that of generating a spectrum of particle
states with the proper sequence of spins and inter-
nal symmetry labels. For clarity of presentation
we discuss first the case of mass degenerate
multiplets, treating in turn three different
schemes. We come back to the question of the
mass spectrum in the latter part of this letter.

Mass degenevate multiplets. Consider the
fourteen-parameter Lie algebra .[’1 generated by
Pyusdyp, My {u=0,1, 2, 3), with the commuta-
tion relations

[JuvsJor] = i{gvedur - guodvr +8urdou ‘I»’;.LTJc(li)}
[Tuvs Po ] = i{gyvoPy - £puohy) @)
Py,P, =0 (3)
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[Fuvsme = i{gvony - &uov} 4
[ﬂu y My = 0 (5)
iy »Pv]=0 (6)

The ten elements Py, Jyp are identified with the
generators of the Poincaré group. The space in-
version acts as an outer automorphism on the
Poincaré algebra. It is extended to act on all of
L1 by defining 7y to be a pseudovector.

We now look for particle-like unitary irredu-
cible representations of .1 and the parity opera-
tor. The four independent invariants of £’1 may
be chosen to be

Q=P¥P,  Qa=nfn, Q3=P'y,
(M
Q4 = EMVAGPN nydyg

As long as 7y is not represented by zero, the
Pauli-Lubanski operator Hy Wo, where Vg =

= $egauy PMI MY, is not an invariant of £1. Hence
every faithful unitary representation of .y con-
tains a spectrum of representations of the Poin-
caré algebra with various spins (and a common
mass !). The invariant Qg is pseudoscalar and un-
less it vanishes, it will give rise to states of

both parity in a representation of .C1 and the pari-
ty operator. To avoid this doubling we investigate
only representations with Q3 = 0. @ = PHp, is
the (degenerate) squared mass of the multiplet
and is chosen positive: normalizing it to +1, Py
lies on the future time-like unit hyper boloid.

To enumerate the spin that appear, we exa-
mine the (ideal) states with four momentum Py =
= +1, P = 0: all other states are obtained from
these bv Lorentz transformation. The corres-
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ponding stabilizer Lie algebra ("Little Group"
Lie algebra) is generated by J and 7 (since 7,
vanishes on these states by virtue of Qg = 0).
This is isomorphic to E(3), the algebra of the
three dimensional Euclidean group. The unitary
irreducible representations of E(3) are well
known; the two invariants of E(3) are @2 and Qq,
evaluated for P = 0. Assuming the representation
is faithful, 7, is not identically zero; hence @9
is negative and may be normalized to -1. Qg is
the "helicity" of the E(3) representations; if it is
zero, the spectrum consists of all integral
values of the spin, from zero to infinity. In any
case, these irreducible representations of L1 con-
sist of an infinite sequence of particles with equal
mass and parity, and with spins starting at a
value determined by @4, and going up in integral
steps. Each spin appears no more than once.
This spectrum for half odd integral spins, is thus
reminiscent of the isobar spectrum in the strong-
coupling limit of the static neutral pseudoscalar
meson theory [4].

Maintaining the mass degeneracy, we can add
an internal symmetry to this model in a trivial
way by means of a direct product structure. In
the isospin case, for example, we introduce six
generators I;, F; (j= 1,2, 3), commuting with all
the elements of .GI, and obeying among themsel -
ves the commutation relations of the algebra of
SU(2) ® sU(2), T(3) x SU(2), or SL(2,c). Repre-
sentations of L7 and the generators Ij, F; are ob-
tained as direct products of a representation of
£7 and one of Ij, Fj. In no representation of this
type will there be any correlation between the
spins and the isospins. It would be much more
interesting to obtain an algebra including internal
symmetry, such that in at least some of its re-
presentations there exist definite correlation be-
tween the spins and isospins of the particles, as
in the strong coupling limit of the static symme-
tric pseudoscalar theory.

To this end, we consider the Lie algebra Lyp
made up of the twenty-five elements Py, Juy, I] ,
j=0,1,23j=1,2, 3) theonlynon-
vamshmg commutators are (1), (2) and the follow

ing

Ujpmypl =1 €kl Tl (9)

[Jp,w"ok] = i{gl/c”uk - 8uc ”uk}' (10)

Tyj forms an isovector pseudovector. To deter-
mine the spin-isospin spectrum of a representa-
ti)on we start from the independent invariants of

Ly
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= IJ' M = = . .y
Q1=PFP,; Q2= 17 T @3 137}.(11)
where
Tj=7rujP“ (12)

Once again, we choose @1 = +1 and let P, lie on
the unit time-like future hyperboloid. To avoid
parity doubling in the representation, we choose
@3 = 0, forcing the pseudoscalars T; to vanish.
This time, the stabilizer Lie algebra for the
(ideal) state vectors with Pj = 1, P, = 0 is gene-
rated by the elements I;, J and 7;, which obey the
commutation rules of the Lie algebra T(9) x

x {SU(2) ® SU(2)}. The representations of this
algebra have been studied recently [5,6]. Three
interesting kinds of representations may be iden-
tified:

(i) The sequence with equal spin and isospin, [ =
= §=all integral or all half odd integral values.
Each I=S multiplet appears just once. This se-
quence is familiar from symmetric pseudoscalar
meson theory [4].

(ii) The sequence with the spin § taking on all
integral or all half odd integral values; for each
S, I=|S-n|, |S-n|+1,...5+n, where nis any
integer or half odd integer characteristic of the
representation. (Representations of type (i) cor-
respond to n=0). The case n =% corresponds to
the strong coupling sequence for strange hyperons
[6]. In this case again each spin-isospin multi-
plet occurs just once. One also has representa-
tions of this type with Jand S interchanged. (iii)
The sequence with I and § varying independently;
S taking on all integral or half odd integral
values, and independently all 7 values being inte-
gral or half odd integral. There is here no corre-
lation between spin and isospin. A simple way of
generating this kind of representation is to take
for Tuj the product of a pseudovector @y and an
isovector b;.

We have thus exhibited a finite-parameter Lie
algebra .27] containing the Poincaré algebra, and
with unitary irreducible representations which re-
produce the isobar spectrum in the strong coup-
ling limit of the symmetric pseudoscalar theory. -
The extension from isospin to SU3 is obvious. In
accordance with O'Raifeartaigh's theorem [2],
there are no mass splittings in such a model.

Muass splittings and Lie algebras. To generate
an algebraic framework within which we could
obtain mass splittings, we have to construct a
richer structure than Lie algebras. We observe
that in the strong-coupling approximation to me-
son theory, the spin-isospin spectriom is obtained
in the strong coupling limit, but the masses are
no longer degenerate for finite coupling strength.



Volume 24B, number 6

PHYSICS LETTERS

20 March 1967

The meson sources have matrix elements be-
tween these states of different mass [7]. In the
present case we should require that the opera-
tors 7; perform this function in the frame in
which'the spatial momentum of the isobar is zero.
We have to consider a relativistic transcription
of this result to allow 7 to connect states with
non-zero spatial momentum. Since the zero
three-momentum states essentially determine
these matrix elements, the natural method of
implementing this transcription is to consider

T uj to commute with the four velocity M-l Py
an({ fail to commute with M in a manner which

is completely determined by the matrix elements
of the operators between zero three-momentum
states.

Accordingly we consider an algebra which in-
cludes the elements Py, Jy, Tuj, &j and M with
the restriction that M~1P; commute with 7 ;.
Following Werle [8], this can be written in this
form:

Py myiM-Mm,;Py =0 (13)

This relation goes beyond the structure of a Lie
algebra, as does the relation

Php, -M2-0 (14)

To (13) and (14) we add (1), (2), (3), (8), (9), (10)
and the commutativity of P, J, with I;. From
(14) follows the commutativity of M with P, Ju,
Ij. We also require the components of myj to
commute with one another. At this point we are
dealing with an associative algebra o{ generated
by the twenty six elements Py, Jup, muj i, M
modulo the commutation rules and nonlinear rela-
tions listed above.

For states at rest, P = 0, and we may choose
P, =M. The relation (13) states that acting on
these states, Tuj reproduces states at rest. Once
again we consider the stabilizer algebra of these
states. It is generated by the elements J, muj and
Ij . Since for the algebra «{ the pseudoscalar Tj=
=PH 7 . may be chosen zero without fear of con-
tradiction, we do so and avoid partity doubling.
Then the stabilizer algebra is generated by J, 7
and Jj. and this is isomaorphic to the Lie algebra
of T(9) x {SU(2) > SU(2)}. We have already noted
the kinds of spin-isospin spectra that can be ob-
tained from this algebra. It is to be noted that
this spectrum has been obtained here without
further specification of the mass operator beyond
(13).

Having obtained the spin-isospin spectrum, we
impose additional nonlinear relationships to ob-
tain a suitable mass spectrum. These relations
may be chosen in such a way that T; = 0 is a con-

sequence of them. We require M to obey the fol-
lowing:
-iM[Tr“jM, Py M= bejpM {1, My }PAM +
3 (15)
+aM{Jd,g,1j} P\ M +a{Jf3.y,Pu}1r]ﬁP7’P>\

where @ and b are two real constants and { , }de-
notes the anti-commutator. By direct computation,
we deduce from (15):

-IM[‘”“],M]M= bejkl M{Ik’ Tf“.lflM +

+aM{Ju[3,1rf}M+a{Jﬁ7’,Pu}n]-P.y (18)
and
. = . pH_
T] = ”IJ]P 0 17)

We may further show that in virtue of (17), the
element

V4

M-aW W9-pbILI,
o 7 (18)
Wo =3 M Legy,, PAaiv

commutes with all elements and must be represen-
ted by a number M, in every irreducible repre-
sentation of the algebra «{ (in which (17) holds).
We thus deduce the mass formula

M = M, +as? + b12 (19)

where 12 = J(O+1) and S2 =c§(J+1) are the eigen-
values of the squares of isospin and spin.

The restriction to isotopic spin is of course
for convenience in illustration. One can general-
ize the above construction to incorporate SU(3) as
the internal symmetry, and choose a non-linear
relation analogous to (15) so as to lead to a mass
operator showing spin dependence, the octet type
symmetry breaking, and SU(3) representation
mixing. The strong coupling spectrum in the
SU(3) case is also known [9].

Application to mesons. In a similar frame-
work, using an associative algebra with certain
non-linear relations postulated, one can arrive at
a mass squared formula for the mesons. At the
isospin level, such a formula reads:

M2 = 012(v,8U(3) +a S(S+1) -bI(I+1)  (20)

Here« and b are fixed constants characteristic of
the algebra, while AIg contains the dependence on
hypercharge 1 and the SU(3) representation labels
(viz, octet, 27-plet, etc.). To compare with ex-
periment, we tentatively choose b = 3¢ = 0.1415
(GeVv)2.
The 7, p, A2, 5, £, S(1930) and U(2380) me-

sons can be treated as one "multiplet" under this

M3
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mass formula, with ¥ = 0, SU(3) octet. The spin-
isospin quantum numbers for these mesons are
not all established but we take them to be (S,I) =
= (0,1), (1,1), (2,1), (0,0), (2,0), (3,1) and (4,1)
respectively. We use the pion mass to fix Mg,
which gives Mcz) =~ 0.30 (GeV)Z. We then predict
the squared masses of the remaining mesons, in
the order listed, to be 0.58, 1.74, 0.30, 2.03, 3.5
and 5.8 (GeV)2. The corresponding experimental
[10] values are respectively 0.58, 1.75, 0.30,
2.02, 3.7 and 5.7.

The Y = +1, SU(3) octet mesons K, K*(891),
K*(1400), and K*{21800) can be grouped together,
with a common M§. Using the kaon mass, we
find now Mg ~ 0.35 (GeV)2. We then predict the
squared masses of the K*'s listed above to be
~ 0.81, 1.99 and 3.6 (GeV)2; this is in fair agree-
ment with experimental values which give respec-
tively 0.79, 1.99 and 3.4.

The consideration of a mass formula with a
more specific dependence on Y and SU(3), and
which allows SU(3) representation mixing, will be
taken up elsewhere.

Remarks. In the construction of algebras
leading to a mass spectrum, we have generated
an associative algebra & with an infinite number
of elements. This algebra is not a finite param-
eter Lie algebra. It is possible, however, by a
factorization process, to provide a simple under-
lying structure in terms of a finite parameter Lie
algebra, as follows: Consider the twenty-five
parameter Lie algebra £y generated by Ry, Jyv,
Ij, Mg write

M=My+aVoVo+b Ll
1)
=3 €a)\;wRA JHY

where M, a, b are constants. If we now construct
P according to

an4
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Py, =MR, (RMR = +1) (22)

we obtain the algebra o{. Thus while the algebra
A is not itself a finite parameter Lie algebra, it
can be simply generated from a finite parameter
Lie algebra Ly1.
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