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Recent work on the Bondi-Metzner-Sachs group introduced a class of functions ,Y,.(6, ¢) defined
on the sphere and a related differential operator 8. In this paper the , Y., are related to the representation
matrices of the rotation group R, and the properties of 3 are derived from its relationship to an angular-
momentum raising operator. The relationship of the sTim(f, é) to the spherical harmonics of R, is also
indicated. Finally using the relationship of the Lorentz group to the conformal group of the sphere, the
behavior of the T}, under this latter group is shown to realize a representation of the Lorentz group.

1. INTRODUCTION

RECENT paper by Newman and Penrose on the
Bondi-Metzner—Sachs group! features a new
differential operator,? symbolized by d (“edth,” the
phonetic symbol for the hard *“th”), and a related
class of functions ,¥,,,(0, ¢), all defined on a sphere,
in a central formal role. It is the purpose of the present
paper to study O and these generalized spherical
functions and to relate them to more familiar struc-
tures.
In Sec. 2, we review previous work and give some
further geometrical interpretation of thop as well as
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! E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

? The operator symbolized by & has been referred to colloquially
as “thop.”

an illustration of the suitability of d and the | ¥,,,.(0, ¢),
s=1, 0, —1, in the manipulation of Maxwell’s
equations. In Sec. 3, we introduce and develop the
formalism which allows one to view 0 as a thinly
disguised angular-momentum lowering operator and
to relate the ,Y,,(6, ¢) to the elements of the repre-
sentation matrices of the rotation group Ry. This
work was on the one hand motivated by inspection
of the results reviewed in Sec. 2 and on the other hand
allows a simple rederivation and ready extensions of
such results. As an adjunct to this section, the relation-
ship of . ¥,,.(0, ¢) to the spherical harmonics of R,,
1.e., those functions which carry the representations of
R, defined-on the unit sphere in four dimensions, is
briefly indicated. In Sec. 4, we discuss the well-
known relationship of the Lorentz group to the
conformal group of the sphere and determine the
behavior of the ,Y;,, under the conformal group,
thereby realizing a representation of the Lorentz
group of somewhat unusual appearance.
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2. SUMMARY OF PREVIOUS WORK

In this section we discuss some of the previous
work! on the differential operator 8 and the spin-s
spherical harmonics (Y, .

In three-dimensional Euclidean space with polar
coordinates r, 0, ¢, we introduce an orthonormal
triad a, b, and c of vector fields. The vectors a and b
are tangent to the sphere of radius r at each of its
points while ¢ is in the direction of the radius vector .
Of course a and b are only defined up to a rotation of
angle y about c. It is very convenient to introduce in
place of a and b the complex vector m and its complex
conjugate M by means of

V2m = a + ib; @1

then m is defined up to a phase factor, i.e,, m’ = ¢m.
A quantity # is now said to be of (integral) spin-
weight s if, under (2.1), it transforms according to

n = e, (2.2)

Examples of quantities of spin weights s = 1, 0, —1,
respectively, are
A.m,A-c, A-m,

where A is any vector. More generally, examples of
quantities of spin-weight s are furnished by three-
dimensional tensors of rank n contracted &y, k,, and
k, times with m, ¢, and m, respectively, where
ky —ky =35, ki + ks + k3 = n. We adopt the con-
vention that the real and imaginary parts of m point
along the coordinate lines and hence transform
according to (2.2) under coordinate transformations.

The differential operator &, acting on a quantity %
of spin-weight s, is defined by

on = —(sin 8)”[ + icscd

Since one has

8¢J(Sm 6y 5. (2.3)

()" = ec+1v (B,

it is seen that & has the important property of raising
the spin weight by 1. Similarly if one defines 3 by

= —(sin 0)~ [—% —icsch E](sm 'y (2.3a)

2.4

with # here also a quantity of spin-weight s, one can

see that O lowers the spin weight by 1. Also one has
(35 — 3d)n = 2sm.

Of importance too is the effect of 8 on ordinary

spherical harmonics:

Yim(as ‘i’)’ -1 S m S fa

Indeed we can define spin-s spherical harmonics

[=:0, 1;2500mm
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oY, for integral s, I, and m by
SYEm(GJ ﬁb) — [(} = ‘s')!fr(! + S}!]éasyim(ﬁ’ ¢)7

0<s <
= [(/ + )Y — )P (=)= Y,,(0, §),
—I1<s<0. (2.9

The .Y, (which are not defined for |s| >I) form a
complete orthonormal set for each value of s; ie.,
any spin-weight s function can be expanded in a series
in ,¥,,. The spin-s spherical harmonics have the
further properties:

0] T =L~ K (2.6)
(1) 3w = [l = U + s + DIty 1 Vi, (2.72)
(i)  8,Y, = —[((+5)( =5+ D} 1 Yim, (2.7b)
(iv) 83,Y,, =—(—S)U+s+1DYm. (28)

Thus & and 3 act as raising and lowering operators on
the “quantum number” s, and the ,Y,, are eigen-

functions of 3d.

For many computations, a more convenient coordi-
nate system for the sphere is the set of complex stereo-
graphic coordinates (£, £) which are introduced by

{ = ¢ cot }0. 2.9)
® and O become
o = 2P [(P7)/3L],
By = 2P [2(P—7)/07],

with P = (1 + (). In the (¢, 0 system, the spin-s
spherical harmonics take the form

(2.10)

8 Y!.m

ST

l—s I+ s - g
e e N 5 |
xg(p)(p+5—m){(§ L
with
Ay = (=)™ + m)! (1 — m)! (2] + D)fd]t.

(2.12)

Expression (2.11) applies also to “spinor harmonics”
for which /, m, and s are all half-odd integers.

d can be related to covariant differentiation in the
following manner: using coordinates on the sphere
such that the metric takes the form?

dst = P2dl dl,
we introduce two complex vectors m® = J2Pse,
Mt = \/20%, « = {, {. From a spin-weight s quantity
7, we can deﬁne a totally symmetric and trace-free

3 The function P and the coordinates { need not be the ones used
in Eq. (2.10); as a matter of fact the surface need not even be a
sphere.
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tensor of rank s,
Nl — Ny~ * g + Ty - My,
with the inverse relations
e PR
N = Ny My T = 1, g A
It is now easy to prove

(2.13)

Oy = _\ﬁnmmm:?m’ <P,

As a simple example illustrating the use of & and
the ,Y,,,, we consider the Maxwell equations

V- (E +iB) = 0,

2.14
V A (E + iB) — i(3/0t)(E + iB) = 0. )
The quantities*
G+= (E +!B)'m,
G, = (E +iB)-¢, (2.15)
G_= (E+iB)-i
of spin weight 1, 0, and —1, respectively, can be
shown from (2.14) to satisfy the equations
0 o\ »/0 o =
g, 0 — — =\|rG, — 83,G, =0, (2.16
(at + ar)r (Bt ar)r : : Gle8)
0* ik %
(@ _ ﬁ) rG, — 38,G, = 0, (2.16b)
d d\ /70 0
9 Ty 3 Z\e _ amiG. =0, (216
(ar 3?‘) ¥ (ar * ar)r S

in which the quantities G, G,, G_ are already un-
coupled. If we assume solutions of these equations of
the form

?‘G+ = F+(r9 r}l Ylm(aqs),

r2Gy = Fo(r, 1)y Y1 (09), (2.17)
rG— - .F_(l', Ii‘)—1 Ylm(egb)a
it is seen from Egs. (2.7) and (2.8) that
d  d\ /0 d
— 4+ =|r¥[= = =|F I — 1)l +2)F, =0,
(a£+6r)r (az ar) woE =
2 o |
(@ - E—};)FO + 510+ DEy =0,
6 0\ /0 0
— — ==+ = F I—1 2F_ =0,
(az Br)r (ax T ar) =Dl T

(2.18)
the dependence on angular variables having canceled
out. These latter equations can be solved by a variety
of standard techniques, though it is not our purpose
to go into this question here.

4 G., Gy, G_ have been referred to elsewhere as ¢, ¢, . ¢.. See,
e.g., E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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The main point to be made is that Maxwell's
equations or more generally vector equations can be
simply solved in terms of the ,Y,, instead of the
cumbersome apparatus of the vector spherical
harmonics.®

3. RELATIONSHIP TO R, AND R,

In this section, we identify the functions ,Y;,, with
the elements of the matrices of the representation
D' of the ordinary rotation group Ry, and relate
to an ordinary angular-momentum raising operator.
We thereby obtain the principal properties of the
.Y, and 8 as transcriptions of results familiar in the
theory of angular momentum.

We proceed first to the above mentioned identi-
fication of the ,Y,,,. For our purpose it is convenient
to have an explicit definition of , Y,,,(0, ¢) rather than
the expression in terms of stereographic coordinates
given in Eq. (2.11). By direct substitution of (2.9) we
obtain®

U+ md = m QL DT o

Jia(l, §) = [ TToll—s! an ] (sin 0/2)
[ —5s ! +8 __\l—r—s,imd 28—
xz( ) )(r+s_m)( Yr=sem(cot B2)F
(3.1)

Now we give” careful definitions of and appropriate
explicit formulas for the elements of the matrix D',
of the representation of R, associated with total
angular momentum /. If a spatial rotation R of angle
w about a unit vector n is given by

xk sy x‘k ) szxr.,
R = §*' cos w + n*rY(l — cos w) — 1" sin o,
(3.2)

then the matrix D' may be defined by its action on
spherical harmonics

Y.im(i) b= <i [ 'Em) T Y;m(i!)v
% = (sin A cos ¢, sin 0 sin ¢, cos (), (3.3)
Y.’.m(i’) = z Yim’(x.}Din’m{.R-l}'

5 [t has recently been pointed out to us that the functions , ¥,
have already been introduced, though by very different techniques.
For this alternate method, and its detailed application to Maxwell
theory, see [. M. Gel'fand, R. A. Minlos, and Z. Ya Shapiro, Repre-
sentations of the Rotation and Lorentz Groups and their Applications
(The Macmillan Company, New York, 1963). B

¢ [n this passage from Eq. (2.11) defining , ¥;,.(, £) to Eq. (3.1)
one should not only insert the definition (2.9) but also introduce an
additional phase factor ¥ to account for the rotation of the vectors
associated with the change of coordinates (£, {) to (6, ¢).

7 The necessity for the detail of the discussion here stems from
the fact that we could not simply refer to one of the few completely
consistent treatments of the theory of the rotation group available
in the literature, without extensive modification of the notation
employed in Ref. 4 and related papers.
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If we define a rotation R(x, 3, ) of Euler angles
o, B, y as being composed of® y about OZ followed
by  about OY and then = about OZ we have

Din’m(g'f:’}y) = Dfnm(R(yﬁy) “1)
an em!'?{‘{fm’m(ﬁ)efmx'

Following Wigner, in principle if not in detail, we
employ the relationship of Rs to SU, in order to give
an explicit formula for D] . («fy). If the element A
of SU, acts on a two-component spinor w = (1),
where

(3.4)

= e*cos tf, v = e sin lf, (3.5)

so that ufv = {, according to w - w' = 4w, then
the correspondence of A €SU, to Re R,y can be
given in the form!?

R = L Tr (6*40*A1), 1.6)
A = £(1 + 0*'R*)/[4(1 + Tr R}, &

which allows us to obtain the image A(«fy) of

R(x3y) in the form
A(py) = ( Z b.), a = e cos 4,

b = ¥ gin 18, (3.7)

Now defining
(Fs_fm(”, U) it

Hj+mvj—m

| [+ m)! (j — m)1ph
as usual we can, in agreement with Eq. (3.5), write

gsjm(”s U) - (i{):'m(u’: v’)s
(ﬁjm(“,s Ur) = 2 qum'(“s U}Dfn'm(A(aﬁy}_l):
and with a little algebra obtain
D:n'm(“ﬁ‘}’)
= D;n’m(A(aﬁ?J_I)
_ [{j +m)!(j = m)!T
(L=}

(3.8)

-+ m j—m )
r F—m—m

% a’ _;'+m—-r(_,, byt m'—rgr—m—m’
k

By VESITEL Y, SRS
(j+mH(j—m)

% Z (f + m!)( f — ' ’)(_)ﬂ-m’—r
I P rF—m-—m

% eims(cot' éﬁ)‘Zr—m—m’eim’y.

-

(3.9)

8 This procedure is clearly equivalent to the more usual one of a
rotation & around OZ, followed by § around OY’ and finally 3
around OQZ£°.

9 E. P. Wigner, Group Theory (Academic Press Inc., New York,
1959).

10 Tt follows now that under w — w’ = Aw, W = wow (= QJ has
the transformation law W*= W% = R¥W! as consistency of
COuTse requires.
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We may now insert o = ¢, =0, j=1, m = —s
into Eq. (3.9) and, by comparison with Eq. (3.3) obtain

Yo 08)e™7 = [(2 + 1)}4m] DL, ($0), (3.10)
so that for = 0 we can make the promised identi-
fication

Y (04) = [(21 + Df4n]E DL, ($60).
Note that for s = 0, we have

Yiu(09) = [21 + DJ4n] Dy, ($00) = Y., (04),

so that the spin-s spherical harmonics with spin
weight s =0 are exactly the ordinary spherical
harmonics. It may also be noted that our procedure
extends the definition of spin-s spherical harmonics
to the case of s half-integral.

Now the functions D!. (afy) provide a complete
orthonormal basis for functions defined on Ry, so
that orthogonality and completeness relations for
Y6, ¢) follow easily. The orthogonality relations

(3.11)

2z 1 27
f daf d cos B j dy DL, () DY s el fiy)
JO i o

e [8“’2{(2! + 1)]6JE’(§mm’ass’ (312)
translate, by use of Eq. (3.10) and relabeling, into

2w 1
f quJ. d cos 65 ?Em(eqs)syl’m‘(ﬂgﬁ) = ézz’émm‘ . (3'13)
L] -1

It is noteworthy that we obtain in this way only an
orthogonality relation involving spin-s spherical
harmonics of the same spin weight. Orthogonality of
the D! with respect to s in Eq. (3.12) is of course
associated with the variable ¥ which is absent in Eq.
(3.13). Also from the completeness relation

z Drii m(ﬁﬁ?) D:}a’rn(a’ﬁi?,]

Imm”

= 87%(21 4+ 1)d(x — a")d(cos § — cos )y — ¥'),
(3.14)
we can prove, by evaluating

2r
f dye (- +)
D

(where s is any integer) on both sides, that we have a
completeness relation

z SYInl(G¢J.¢YIrn(GJ¢,) = (5(?5 - t;ﬁ})(j(COS 0 — cos aj!
" (3.15)
for each integral value of s. Thus for each integral s
the function ,Y,,(6¢) form according to Eqs. (3.13)
and (3.15) 2 complete orthonormal set of functions on
the unit sphere with respect to which any function
of spin-weight s defined on the unit sphere can be
expanded.

1L R, Penrose, Proc. Cambridge Phil. Soc. 55, 137 (1959).
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We turn now to the use of Eqs. (3.10) and (3.11) to
motivate the association of & with an angular-momen-
tum raising operator. We set out from the observation,
familiar from the theory of the symmetric top, that

if one defines operators L, L.,
0
Ly=—1—,
0o

L,= :I:ei.;a(% 4+ icotf é%( + icsc ﬁé%) (3.16)

which obey the commutation relations

[L., I:} ==L, EL+’ L ]= 2L,
of angular momentum, then for each allowed value
of s, D! («fly) behaves like an eigenvector |/m), i.e.,

Lle—sm = E('! T} I)D—sm:
L D—sm = mD! ~gm 2
L. D% [(lFm(l+m+ 1) DL, . (3.17)

We do not relate L, to 8, of course, but instead
define a second angular-momentum operator K,
which commutes with L, and with respect to which

! . behaves like an eigenvector |Is) for each allowed
value of m, The way to define K follows easily from
the symmetry of D* _ (a, 5, ¥) with respect to m, « on

—8TTE

the one hand and s — y, on the other. Thus, we define

K, = 1i
dy’
ei”(aﬁ + Icotﬁ-— + icscf ) (3.18)
and deduce '
£Kst:t] S :I:K:I:! [K,_,K_] = 2Kzs
[L,K] =0,
and
K*DY,, = I(l + 1) D™,

K. DL =3§D! ..

KDl = [0 F 90 & s + DFD sy (3.19)
We are now in a position to make explicit the relation-
ship of K, to 0. When acting on D! the operator

K, can be written in the form

K+=e—w(%—fscotﬁ+ icscﬁ%)

= ¢ (sin B)° ( % +icscf )(sm £ (3.20)

so that
[K+ Dl—sm]a=¢,ﬁ=ﬂ,}'=0 = Z’)‘Di-sm iqsﬁo) (321)
follows in accordance with Eq. (3.1). Thus K. is the
differential operator to which the operator 8 is more

closely related. The reason that 9 is not defined as a
differential operator by Newman and Penrose stems

2159

from the fact that they work only with ¥, (6¢) ~

Dt (¢60) rather than D' (40y), ie., from the
nonappearance of the variable y. Of course this in
turn results from the fact that such a variable is not
needed by them on physical grounds. However, the
properties of d follow very easily from its relation to
K. . For example, from (19), (21), and (10) we get
directIy

8.Y(06) = [ — )1 + 5 + DI Yon(04), (3.22)
whlch is Eq. (3.22) of the paper by Newman and Pen-
rose. Of course, it was results like this one which
initially suggested the relationship of s to a magnetic
quantum number and motivated the identifications of
o with an angular-momentum operator.

Finally, it may be worthwhile here to point out
the relationship of 8 to representations of R, defined
on the unit 4-sphere x% + xZ+ x2+ x2=1. It is
well known that the generators of infinitesimal rota-
tions of R, can be defined according to

My = —i(x0, — x,0,), 1<k, 1<4,
and replaced by a pair of commuting angular momen-
tum operators £, J: _
£1 = My + My, £2 = —M_rsl + My,
£a = My + My,
My — Myy, Ky= Mg — My,
Koy = Myy — My,

Now, in view of the consequence £ = K? of these
definitions, only the subset (/, k) of representations of
Ry with I =k =0, }, 1,--- can be defined on the
unit 4-sphere with these “standard” definitions of the
six infinitesimal generators. However, only these
representations arise in the previous discussion. We
can explicitly make contact with the formalism of the
previous paragraph by introducing polar coordinates
according to

x, = sin 38 cos (= — 3),

Xy = c0s £f sin L (o + 3),

Xy = sin 36 sin 3(x — ),

X, = cos 4 cos 3(a + ¥), (3.23)
for then £ =1L, X =K follow. Alternatively we
could remark that the Di. (47") form a complete

orthonormal basis for functions defined ‘on SU(2).
Explicitly this latter term refers to functions of a, b

such that
a b
A= _
—b a

belongs to SU(2), or simply such that |a|? 4 |b[2 = 1.
Now from (7) and (23), we have
b= X1 —

J‘u_

a= x, — ix,, ixy,



2160

so that functions of a, b such that

lal®* + 6] = xT + xi + x5 + xi =1
can be read as functions defined on the unit 4-sphere.
This remark is of course what underlies the identi-
fication of the D?,, with the basis of the representa-
tion (j,j) or R;.

It is perhaps worth emphasizing that the ,Y,,(0¢)
or the D! play two very different roles being on the
one hand closely related to matrix elements of the
representation matrices of Oy and on the other hand
closely related to bases functions of certain representa-
tions of O,.

4, THE LORENTZ TRANSFORMATION
AND SPIN-s SPHERICAL HARMONICS
A. Conformal Mappings

Up to this time the discussion of the spin-s spherical
harmonics has been based on their relationship to
the rotation group. The rigid rotations are a three-
parameter group of isometric mappings of the unit
sphere onto itself. Thus

ds? = dB® + sin® 0 dgp? = di"™ + sin®* 0" dp? (4.1
if the mapping {f, ¢} — {0', ¢} is a rigid rotation.
In order to relate the spin-s spherical functions to the
Lorentz group it is necessary to enlarge this group of

homeomorphic mappings of the 2-sphere. The
mapping {0, ¢} — {0', ¢’} is conformal if
ds? = df* + sin?® 0 d¢?

= K¥0', ¢')(d0'* + sin® 0" d¢'?). (4.2)

Clearly the rigid rotations form that subgroup of the
conformal transformations for which the conformal
factor K* = 1. The conformal group, which preserves
the angle between two curves and its direction, can
be shown to be a six-parameter Lie group which is
isomorphic to the proper homogeneous Lorentz
group.'t!2 The result can be easily derived and as
it introduces the notation we wish to use in our
discussion of spin-s spherical functions, we give the
proof here.

In terms of the stereographic coordinates { =

e'? cot §/2 which were introduced in Sec. 2, the
metric on the unit sphere has the form
ds* = 4(1 + {§)2dldL. 4.3)

The complex coordinate { defines a point in the
complex plane. Therefore, the conformal trans-
formations of the complex plane will induce the
conformal transformations of the unit sphere onto
itself. The only transformations with a simple pole
and a simple zero at the new north and south poles,

12 R, K. Sachs, Phys. Rev. 128, 385 (1962).
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respectively, are given by the Mobius transformation

U'=(l+PIGL+0); ad—fy=1 (44)
Applying this transformation to Eq. (4.3) we find
ds* = K® = K*[4(1 + ['0)* 4L df’,  (4.5)
(L + B)E + B + L + NGFL + §)
1+ '
The complex constants o, §, y, and d together with
the restriction indicated in Eq. (4.4) represent six
real parameters.

To show the isomorphism of Eq. (4.3) with the
proper homogeneous Lorentz group, we introduce
a two-dimensional complex linear vector space. Let
u, and u, be the components of a vector in this space.
To each transformation (4) there corresponds a
transformation of SL(2) as follows:

up = au; + Puy, Uy = yuy + ouy,  (4.7)
as can be seen by the identification { = u;/u,. SL(2)
furnishes a double covering of the conformal trans-
formation exactly as it furnishes a double covering of
the proper homogeneous Lorentz group. Thus the
required isomorphism is established.

K= (4.6)

B. The Irreducible Representations DUJU3)

If £ and # are two independent basis vectors in the
two-dimensional spinor space [the space of vectors
(1, up) which satisfy the transformation law (4.7)],
then a basis for the linear vector space defining the
irreducible representation of the Lorentz group
denoted by** DlilGe) is given by

(gurmmym) (G,

0<m <2, 0<my< 2. (4.8)
The parentheses indicate complete symmetrization of
the factors. This linear vector space is (2j, + 1)
(2, + 1) dimensional. Therefore, an arbitrary vector
in this space is determined by (2j; + 1)(2j, + 1) X
numbers a,, ., The transformation (4) which maps
(uy, uy) into (ul, u,) induces a corresponding mapping
of the components a, into components a, ..
By considering the transformation of the quantities

(U ™ )
= (auy + Pug) ™ (yuy + duy)™
(&, + Bit) ™ Fuy + Siig)™

25y 2in

¥ Ydel gnirnine, weses [y
1 HD na=0
we establish the transformation
2jp 2ig
mlmz z Z Atf'iil’(*;‘z:‘lﬂs nyrg t (410)

=0 ng=0

12 See, for example, P. Roman, Theory of Elementary Particle

(North-Holland Publishing Company, Amsterdam, 1960).
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C. The Transformation of the Spin-s Spherical Harmonics
Consider the set of functions
ZL (1 + gZ)—LEL—s—m|ZL+5—mg

Isi<L, 0<m<L—s, 0<m<L+s.
(4.11)

Applying the transformation (4.4), we get for the
transformed set

Zmm, = [FKHL + (DXl + BF™(al + )™
X (& + B + H™}  (4.12)
with
L _ @+ oGl +9)
1407 K1 + )
o v{+é
9+ 6

and K given by Eq. (4.6). Comparing (4.12) with Eq.
(4.9) and (4.10), we find that

L—s L+s
Z;nz;m — K—Lpist Sy A[n%fia 111153(143)12;51“
n1=0 ng=0
Therefore, up to the conformal factor K—Fe’s*, the
functions (ZZ  transform under the DU Z—9b(Z+o]
irreducible representation of the Lorentz group.
Clearly these functions do not form an orthonormal
set of functions on the sphere for fixed s. Indeed, for
all L > [s| they form a redundant set of functions for

definite spin-weight 5. However, the spin-s spherical
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harmonics Y, do form an orthonormal set for fixed
s. It is easy to show that for / < L the , Y, are given
umquely byedhie. 24
L—s L+s

=2 2 B L e

my=0 mng —0

(4.13)

sl WL
comfl — 5
Bi;nmlmg= ahn _ 1Pt m( )
! [(I—s)!(+5)! ]*go( 1 p
" [+ s ) L —1 )
(p—]—s——m(L—s—«m,v—p

X é-mg,m1+5+-m) (414)
Pm=min{L —s—m,l—s,1+m} (4.14a)
and the a,,, are the constants defined in Eq. (2.11).
For fixed s and L the coefficients BZ ™™ form
a nonsingular
L—-—s+DL+s+DXL—s+DL+s+1)
to the

sy

transform under the

matrix [(/, m), (m,, m,)] connecting the ,Z%
Y . Since the ZL

Mg

L= L5
representation of the Lorentz group up to the factor
K-Le it follows that the .Y,,(ls] <I< L and
|m| < 1) transform under an equivalent representation
up to the same factor.

The above results hold both for L and s integral, or

half-integral.



