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It appears that all known particles obey either Bose or Fermi statistics; and
that integral spin particles like the photon and the pion obey Bose statistics
while half-integral spin particles like the electron and the nucleon obey Fermi
statistics. It would be ver'y satisfying to be able to deduce the observed con-
nection between spin and statistics from the basic postulates of quantum theory
of fields. In the present paper we state and prove a theorem within a general
quantum theory formulation asserting this relation between spin and statistics.

There has been previous work on this question, notably by W. Pauli (1).

‘The theorem of Pauli asserts the observed connection of spin and statistics

within the framework of relativistic quantum theory. As such it ismot applic-
able to a nonrelativisti¢c situation, say electrons in an atom or in a metal.
Even within the framework of relativistic theories Pauli had to make the
technical assumption that the fields belong to finite-dimensional representa-
tions of the Lorentz group. The theorem of Pauli has been refined and tran-

~ scribed into the axiomatic framework in recent years, but these two limitations

bave remained. ' !

In the present work we show that a specific formulation of the principle of
symmetry between emission and absorption processes characteristic of quantum
theories already leads to the observed spin-statistics relation in all cases.

1. The quantum-theory framework

Interaction processes involving the photon or the electron have always exhibited
a symmetry between emission and absorption. The interaction responsible for
the emission of a photon implies an interaction of the same strength responsible
for the absorption of the photon. The positron emission beta interaction
automatically includes an equally strong interaction for orbital electron cap-
ture. We should include this as a basic property of quantum field theory,
whether it be a relativistic field theory or a nonrelativistic field theory. We
shall refer to a precise mathematical statement of this basic symmetry as the

S-principle.
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The conventional quantization of relativistic finite-component fields include
both creation and destruction operators in the same field. As a consequence
the use of local finite-component relativistic fields would go a long way to
satisfy such a principle. But clearly the symmetry between emission and absorp-
tion should be true even for the nonrelativistic limit of such a theory though
in this limit the field decomposes locally into creation and annihilation parts.

We shall be concerned with Lagrangian field theories and make explicit use of
the Action principle. The Action function is the space-time integral of a Lag-
rangian density. Without loss of generality we may use first order derivatives
only in the Lagrangian density. The general expression would then be of the
form: s v EET
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where H(x) is independent of time derivatives. We shall require the following:

The Action function shall__rqinain invariant _ﬁ_%ld_er___l;h___e_ change

where ¢(x) is a field whose components are linear.combinations of the éompo-
nents of y'(x) such that the field ¢(x) transform in the same manner as y(x):
P =yl E; E'=1

) _"__Smce the Actlon 1s unchanged under the transformation

P(x)=>9i(— x) Esr,

For a relam'lstlc theory " will be one of a set of four vector matrices I,

but no such restrictions are _meosed in the general case. Ounly rotational in-
variance is demanded of the Lagrangian density.

"Both commutation relations and equations of motion for the fields can be
obtained from the Weiss-Schwinger Action principle (2):

By (x) = [pdx), 84],
-

A= |d'xL(x)

For Bose fields we take dy to commute with the field operators and for Fermi
fields we take dy to anticommute with the field operators.

The Lagrangian density symmetrized in accordance with the S-principle
would read: ' '
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where H(x) is suitably symmetrized with respect of the S-principle. As far as
the commutation relations are concerned the precise form of H(x) need not
be known; only the coefficients of the terms involving the time derivatives of
the fields enter the commutation relations.

2. The connection between spin and statistics

For Bose fields we get from the Action principle and the S-symmetrized
Lagrangian density:

16(x°— ) {(ED)rs + (ED)n} [ (), pa(3)] =81, 8(x— )

Hence the matrix (ET") should be symmetric for Bose fields. Similarly, for
Fermi fields we get the anticommutation rules

18— ((ED)as— (ED)un} (9, 1a3)} = 88— 3)

Consequently (EI") should be antisymmetric for Fermi- fields. The connection
between spin and statistics is now reduced to the purely geometric problems
" of determining the symmetry properties of the matrix (ET). - S g
-“The-transformation -reversing -the sign of the-space-time coordinates and
preserving the equations of motion is.called strong reflection within the frame-
-work of finite-component relativistic field theory (3). We shall have to consider
- strong reflection not only for those cases but also for the case of infinite-compo-
nent -fields- as well as for nonrelativistic ﬁelds We shall discuss these cases

in turn.

. Relativistic finite-component fields. In this case the strong reflection transforma-
tion can be obtained as a real element of the. complex Lorentz group and we
wirite for the Dirac field (in the Majorana representation);

#:(x) = pi(x) ¥s)er
so that
E=ys | -

and

ET* = yy*
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Hence the matrix (ET") is antisymmetric and consequently a Dirac field must
obey Fermi statistics.

Any finite collection of finite-dimensional representations of the Lorentz
group can be viewed as a totally symmetric multispinor. The four-vector
matrices [ for such a multispinor can be expanded in terms of a collection
of basic four-vector matrices (4). The matrix E is then the product of one y,
for each multispinor index. It can then be easily seen that (ET) would be
symmetric for even rank multispinors and antisymmetric for odd rank multi-
spinors. But even rank multispinors describe integral spin fields and odd rank
multispinors describe half-integral spin fields.

We have thus deduced the observed connection between spin and statistics
for these fields. = -

Nonrelativistic fields. In this case the strong reflection transformation is not an
element of any familiar group but it can be implemented in the form

?{_’r(x) = qu)”‘!g;(—x)= Cuw;(.'-“‘{)- ey T G MDAt S S PR R

for a spin } field. Any finite-component field can be obtained as a mﬁ[tispinor
of finite rank. Since the Cartan matrix C is antisymmetric it follows that the
strong reflection matrix E is symmetric for integral spins and antisymmetric

for half-integral spins. Ceonsequently-we obtain the observed connection

between spin andstatistics for nonrelativistic finite-component fields.

Infinite-component fields. The deduction in-thesé-cases proceeds essentially

along the. same. lines.. By considering “the transformation properties of the~

geometric strong reflection matrix E with respect to rotations we arrive again at

the conclusion that (EI") is symmemc for 1ntegral spm fields and antisymmetric--

for ‘half-integral ‘spin fields.™ - e

It has been pointed out that it appears p0551ble to relax the spin-statistics
connection for infinite-component relativistic fields. This is of the same nature
" as the apparent possibility to relax this connection for nonrelativistic fields.
‘But in either case, if we impose the S-principle symmetrization with respect to
strong reflection this freedom to relax the spin-statistics connection disappears.

3. Remarks .

The fundamental connection between spin and statistics has been derived
here from the basic principles of Lagrangian theories, and applies equally
well to all quantum field theories in which *“‘spin™ is defined: namely all rota-
tionally invariant field theories. No special mention is made of fields with
only time-like or light-like states since such a qualification is unnecessary. In
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particular it holds for the quantum theory of tachyon (faster-than-light) fields
and for more complicated wave. fields which contain time-like and tachyon-
like solutions. It is very satisfying to be able to eliminate the technical restric-
tions implicit in the statement of Pauli’s theorem.

Since no requirement of positivity of the energy of the field was used the
present derivations hold without modification for fields which describe both
positive and negative energy particles (5).

The most interesting application of the theorem is to nonrelativistic systems:
strong reflection and spin-statistics connection should apply equally well to
these cases.
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Discussion

- Fronsdal |

I completely agree with you that it is.extremely difficult to violate the relation .
between spin and statistics in an infinite-component field theory, and still
expect to get something that is reasonable. I reached this conclusion in a slightly
different way from yours andif I take one minute, I think that-is enough to
explain it. ) B _
If you start off with a finite-component field theory, given by a local Lag-

- rangian, which means that you have an equation-of motion which is a local -

differential equation, then-yeu get, in the usual way, the spin and statistics

- theorem. If you would introduce into this differential equation a term which

looks like &(p,), the sign of p,, something which would bring a very strong
non-locality into the theory, then you could not make such a conclusion
about the connection between spin and statistics. Now, if you start from an
infinite-component field theory, introducing the wrong connection between
spin-and statistics, and deduce the equations of motion-for the states with a
definite value of the spin, then you find exactly such equations of motion. You
find equations of motion involving e{p,), so it is in some sense a very non-local
theory, independent of questions of commutation relations and so on.
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Matthews

Just a comment. You are essentially in the Lagrangian formalism and when
you restrict yourself to infinite-component Lagrangians, then you run into this
other problem of the space-like solutions which you discussed yesterday.
Indeed, all these things are very much interconnected.

Sudarshan o AL & Lk . -
That is true. This gives me an opportunity to mention somethmg I forgot.
-. - The objection.that this makes use of the Lagrangian formalism and thatit does
not, for example, make use of methods used by Burgoyne and other people
who try to deduce this connection in general field theory is well taken; but it is
quite difficult to do this because there are space-like solutions and all the usual
- future tube analytic properties for the Wightman functions and the spectral
_ — —conditions are viclated. So it is not easy to adapt immediately the same argu-
ments for this more general situation. I have looked at the case of the space- - -
“ . like solutions by themselves and also in connection with simpler infinite-
- .-~ - component wave equations, just to see if the same kind of theorem would  -__
e apply in those cases, and as far as I have been able to make out, there is really - - ___:
= . 'no difference, whether the masses are purely imaginary or real, because they
_come in the dynamical part H of the Lagrangian and not in the kinematic -
- 'part which really determines the commutation relations. So this method seems o
“to be equally good for all kinds of wave equations or all kinds of field theories -
including the new formulation which I presented yesterday, which contains
both positive and negative energy particles. e I

Matthews ' e
" If you abandon the Lagrangians, but stick to the requirement of causality, -
~~that is“to say that your commutators or anti-commutators vanish for space- -
- like distances, then this gives.you a very powerful restriction. This restriction is
very intimately connected with all these problems of TCP, antiparticles and

spin and statistics. ; : MR

Nambu

=. . . . _"As was-mentioned by Fubini-Sugawara recently created a new theory in which

.. there was only energy and momentum tensor and no Lagrangian. At first I
. was terribly excited but lately Sugawara himself has found out that it is equi- _
valent to a Lagrangian theory.

Domokos

- T have a question to Nambu. In the Sugawara theory when you go over to the

o-field representation, is it really an equivalence transformation or something
R tricky like when you are trying to go between various representations in super-
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conductivity theory? Is it a canonical transformation whlch brings you from
the current, the ¥, A picture, to the g-picture?

Nambu
I do not know. The o-model is one realization of the current algebra. It may

have a degenerate vacuum or a unique vacuum. We don’t even know whether
it has particle-like states.

Haag
I would comment on Fronsdal’s questmn or suggestion which may be some-

what useful. Assume that -there are no space-like momentum vectors in the
theory. Well, then it seems that you need one more condition in order to ob-

- tain TCP, spin, and  statistics, no matter whether you use finite-component

fields or not; and that condition would be that the total number of states that

~ have bounded emergy and are-also localized in a finite volume are only finite
_in number._ If you impose such a condition, which seems to be reasonable

- physically, then probably-most. of the general results of a. Wightman type

field theory will persist. But-without such a condition, if you allow infinitely -

- manystates within a finite volume in position space and bounded energy, then

the connection is too loose, then you have more freedom.

Matthews E
I want to make a remark about symmetrizing a Lagrangian. The simplest well-

known case is the Majorana equation, I mean the infinite Majorana-Gel'fand
equation where you have only positive frequencies Then'yu will be a field

* which anaihilates p&rudes, v;f: will create the same pamCIes, and if you want

to introduce antiparticles you have got to do it by hand with two new fields @

““and @' You made some remark thch simply 1mphes that you are already

there. That is not true.

Sudarshan
I do not think I have made that statement but let me make my staiement

precise. It is occasionally stated that in the Majorana equation there are no
negative frequency solutions,.which is true. However, if’ you consider the
field theory of the Majorana equation, it would necessarily contain both posi-
tive and negative frequency operators. There is no guarantee, of course, that
they describe one kind of particles or two kinds of particles, but that is very

‘much like-quantizing the. Schrodinger-equation. If you want to quantize the
. Schrédinger equation and have both particles and antiparticles, you have to
- introduce the-antiparticles explicitty “by hand”. - :

25 — 689894 Nobel Symposium §
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Matthews
No, I am sorry. The field y, if you expand it out in terms of creation operators,

will give a(k). You then take its hermitian conjugates and those automatically
contain a'(k). They create particles and then the negative frequency part will
annihilate the same particles.

Sudarshan
So do not take the hermitian conjugate! Instead of taking the hermitian con-

jugate field, let us take operators which satisfy the same equation as the her-
mitian conjugate. For the Majorana equation we choose as Lagrangian density

- L) ={ (T80, — =)y} + {y'(T"3, —%) 2}

Then, as long as » ==y we describe two different kinds of particles but the La-
grangian is hermitian. . .- . - - L

- Matthews o o
‘But an hermitian conjugate is"a mathematical operation. In a theory you
cannot give an order that it cannot be taken! S S—



