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Master Analytic Representation: Reduction of O(2, 1) in an O(1, 1) Basis
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We display the reduction of the pseudo-orthogonal group O(2, 1) with respect to a noncompact
- 0(1, 1) basis. After the explicit solution is obtained, we rederive the results using the method of master

analytic representations.

1. INTRODUCTION
Lie groups and Lie algebras have become increas-
ingly familiar to particle physicists. Conservation laws
and symmetries have been studied in terms of invari-

ance and noninvariance groups. The central idea that

is exploited in these applications is the assumption
that the analytic properties of amplitudes have their
counterpart in the analytic properties of the repre-
sentations of Lie algebras.

We have studied the representation theory of Lie
algebras in terms of analytic representations. Specif-
ically, we wished to show that every linear representa-
tion of a (locally compact) Lie algebra is a special case
of a master analytic representation; that the unitary
representation of any of the Lie groups with this Lie
algebra is a specialization of the master analytic
representation (MAR).

The theory of the MAR synthesizes all Hermitian
representations of the Lie algebra. It also brings out
the relation between the representations of two
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different Lie algebras whose complex extensions are
isomorphic. This is, therefore, an elegant and
powerful method for finding the unitary representa-
tions of various noncompact groups.

Elsewhere,! we have illustrated the technique by
finding the representations of some pseudo-orthogonal
groups.

When a noncompact group is such that its maximal
compact subgroup labels the states within a UIR
uniquely, we believe that the MAR method is quite
straightforward, and it is not too difficult to see why
it works. We, however, believe that this method is
quite general and fundamental and is applicable to
many other groups as well. In particular, one could
reduce UIR’s of a noncompact group with respect to
a noncompact subgroup. In this direction we have
made a beginning by reducing representation of
0(2, 1) with respect to O(1, 1). Throughout the paper
we use, as far as possible, only infinitesimal-operator
techniques. A difficult problem is to find out when a
representation of the Lie algebra permits exponentia-
tion to provide a representation of the group. We do

1 J. G. Kuriyan, N. Mukunda, and E. C. Sudarshan, Commun.
Math. Phys. 8, 204 (1968).
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The Lie algebra of O(2, 1) has three independent
elements J;, J,, J; obeying the commutation rules

i, /o] = —iJ3, (3.1a)
[Jz;-]:a] = iJy, (3.lb)
s, /il = id,. 3.1¢)

A representation of the J; by Hermitian operators
would lead to a unitary representation of the group
O(2, 1). The operator Q given by

Q=Ji—Ji—J2 (3.2)

commutes with the J; and so reduces to a real number
in every Hermitian irreducible representation of the
J;.

We want to introduce a complete set of orthonormal
eigenvectors for the operator J, in the space of a
representation of the J;. Naturally we used to know
the nature of the eigenvalue spectrum of J,. To this
end, let us rewrite (3.1) in terms of the Hermitian
operators J , :

Jo=Jy + Js. 3.3)
Then (3.1) reads

[y, L] = +iJ,, (3.4a)

o, J_ 1 = 2iJ,. (3.4b)

The Hermitian operators J, and J, form a subalgebra
-of the O(2, 1) Lie algebra. An irreducible Hermitian
representation of all the J; may be expected to be
reducible with respect to the subalgebra generated by
Jy and J, . Imagine this further reduction has been
carried out. Within an irreducible representation of
Jy and J,, what can be said about the spectrum of
eigenvalues of J, and J, ? First we find easily that for
all real o,

exp (—iady)J . exp (iad,) = e*J ., (3.5)

so that the eigenvalue spectrum of J, consists of all
real positive or of all real negative numbers. One can
then consider a Hermitian operator InJ, or In (—J,)
depending on whether J, is positive- or negative-
semidefinite. Then assuming InJ,_ to be Hermitian,
say, we find
exp (ixIn J )y exp (—ixInJ,) = J, + & (3.6)

The spectrum of J, then consists of all real numbers
from —co to + oo. This then is the situation within a
subspace irreducible under J, and J. alone.

It is natural then to introduce a basis of eigenvectors
of J, as follows:

Jolds vy = A1 r); (A5 | Ay = 8,00 — A);
B FE } 2) IS % (;7)

What we have to discover is how often a given

eigenvalue A appears, or how many irreducible
representations of J, and J, are needed to synthesize
our irreducible representation of J,, J,.,and J_. The
label r corresponds to this “multiplicity.” It is clear
though that the range of values of r is independent of
the particular eigenvalue 2.

At this point we must comment on the structure of
the commutation rules (3.4a). Taken literally, they
seem to say, for example, that the state

Jo A r) (3.8)

is an eigenstate of J, with eigenvalue A + i. This is
impossible since J; is a Hermitian operator. We infer
that it is not possible to apply the operators J,. to
the vectors |4; r). The solution to this problem is the
following. We must remember that in any case the
states |1; r) are “ideal” vectors, which do not represent
normalizable vectors in Hilbert space. Omitting for the
moment the index r, a normalizable vector |¢) is
really a linear combination of the form

I$) = f " da §1) 12). (3.9)

The wavefunction ¢(4) is normalizable in the sense

g =["aagar<e o1

and the total Hilbert space is made up of all vectors
|¢) with (Lebesgue) square-integrable wavefunctions
$(2). Now the generators J,, J, are, in general, un-
bounded operators and each one has a corresponding
domain of vectors |¢) on which it is defined. For
example, J, can only act on a vector [$) if, in addition
to ¢(2), even A¢(4) is square-integrable. [In this sense,
(3.7) is quite formal.] Among all wavefunctions ¢(1),
those that J, can act upon are characterized as
follows: ¢(4) should be the boundary value of an
analytic function of 4, such that f(1)$(4 — /) is also a
square-integrable wavefunction:

[Twa=orismri<e @

Here, f(4) is a function to be determined, and which
plays the role of the matrix element of J, . Thus for a
vector in the domain of J,, the wavefunction ¢(2)
determines, via analytic continuation, a unique new
wavefunction f(A)$(4 — i), and

118 = 0. ar g = " arscng — o1,
(3.12)

Assuming that a wavefunction ¢(4) is such that both
Sk and Sy may be applied to it, one can explicitly
verify the validity of (3.4a). A similar situation exists
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related to A, via a Fourier transformation:

p(x) = 2m)? f " i 402) da,

-0

1wl = [ o a. (3.25)
In the x language we have
0
Jy= —i,
? l 0x
_ef 1 .0
J, = (b + i — z_), (3.26)
Ox

J_ = e”(b + 3+ iﬁ—).
dx

Let us look for eigenfunctions of J; = }(J, — J_)
for an eigenvalue m:

—icosh x 2 Wp(X)
ox

— (b + zi) sinh xy,(x) = my,(x); (3.27)
the solution turns out to be
1 (1 + ie®
@m?
Restricting ourselves now to single-valued repre-
sentations of O(2,1), m is an integer, positive,
negative, or zero. The question now is this: how often
must each eigenvalue 4 of J, appear in order that J,
have one eigenvector for each integer m as eigenvalue,
and such that eigenvectors of J, for distinct eigenvalues

be orthogonal? We can explicitly compute the scalar
product of two wavefunctions y,,(x) and »,,.(x):

f dx P X) P (),

and we find that this expression is of the form 6, ,,.
only if m and m" are both even integers or both odd
integers! Thus the set of functions

n=20, +1, £2,---,

)m(cosh Xy He (3.28)

I — je”

V,u(x) =

(3.29)

1/)271(“') ’ (3 30)

by itself forms a complete orthonormal basis for the
Hilbert space of square-integrable functions of n;
and the same is true for the set of functions

Yopsa(x), n=0,+1,4£2,---.  (3.31)

This shows that if we assume that every eigenvalue 1
of J, occurs only once [in a representation of the
continuous nonexceptional series of O(2, 1)], we have
a contradiction since we end up with the wrong
spectrum of eigenvalues for the compact generator J5.
But it is quite clear that this situation can be remedied
as follows. We define the eigenfunctions of J; to be
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two-rowed column vectors, cach element being made
up of a function of x:

o= O Vo0 i a2
(< Dpac) =0t

(3.32)

By definition the '¥',, are to be a basis for the Hilbert
space of a representation of J;, J;, J,. Since each of
the sets of wavefunctions (3.30) and (3.31) forms a
complete orthonormal system for the space of square-
integrable functions of x, it is clear that every column

vector of the form
</>1(x)
O = s
(‘f’z(x))

wwafthW+mmm<n(mn

where ¢,(x) and $,(x) are chosen quite independently
of one another, can be expanded as a linear combina-
tion of the ¥,,. And one can see that one now has

(lFma\Fm’)=6mm’; m, ml"_"'o, :L'.la izy

(3.34)

The requirement that J, have the right spectrum of
cigenvalues led to the tact that we have to consider a
Hilbert space of wavefunctions of the type (3.33).
The variable x is related by Fourier transformation to
4, which is the eigenvalue of J,. It follows that in
representations of Jy, J,, and J; corresponding to the
continuous nonexceptional series, every eigenvalue
4 of J, appears twice; the multiplicity index r has two
values. This is in agreement with the observation of
Bargmann.’® Corresponding to the two values of the
multiplicity index r, the expressions (3.26) have to be
modified by writing the generators as two-dimensional
matrices in addition to being linear differential
operators in x. The appropriate expressions have been
derived elsewhere,'! and here we quote the results:

d
Jy= —i—® gy,
2 dx 3

Jx

I

[i sinh x;;i + i(} — ib) cosh x} ® o3, (3.35)
X

Jy = [-—icosh x4 i(§ — ib) sinh x] ®1
dx

To summarize the above discussion, the factoriza-
tion of Eq. (3.18) so as to yield the simplest possible
expressions for the functions f(4) and g(1) led to
operators J, which were Hermitian only when the
parameter b was real. This corresponded exactly

1 See N. Mukunda, Ref. 6.
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are separately Hermitian operators. If, analogous to
the nonexceptional continuous representation treated
in Sec. 3, we attempt to express f(4) and g(l) as
quantities linear in A by writing, say,

S = A= Li+ ik, gd) = —(d— i —ik),
(3.51)

then clearly the Hermiticity of J, and J_ is violated.
[t is desirable, nonetheless, to have both f and g
linear in 4. We can reconcile these two requirements
by working with an indefinite-metric space: we
introduce a triplet of Pauli matrices 7,, « = 1, 2, 3,
we double the spectrum of J, and write :

JA)=4A-3%i+ ikt ,
g(h) = — (A — }i) + ikmy, .
Iy |A; a) = 112; a), (3.52)
Xsa | 2;a) = 80 — D(7y)ue-

Then J, and J_ are given by

0
J, = —i=1f(A+i
- exp( 'ax)f( + i)
, 0 i,
= e_zl:—l 5)‘; + El -+ lk’Tlil,

. 0 of ;0 0 .
J_ = exp (l 31) gA)=¢e I:: o + 5 -+ lk’rl:l. (3.53)
[Subscripts a, b, ¢/, b', - - - will be used to denote rows
and columns associated with the matrices ,.] Be-
cause of the indefinite metric introduced by the
matrix 73 above, the operators J, and J_ are Hermitian
with respect to this metric. [We should call them
pseudo-Hermitian.] It should be emphasized that the
doubling of the spectrum of J, introduced above is not
the same as the possible need for doubling the
spectrum of J, within a UIR of O(2, 1) belonging to
the continuous exceptional family. Whether or not this
latter doubling is called for has to be investigated.
The doubling introduced above is just so that J, and
J.. may be represented by linear differential operators
in x, and so that at the same time they may be (pseudo)
Hermitian with respect to the appropriate metric.
If the spectrum of J, within a UIR of 02, 1) is
covered twice, this will certainly have nothing to do
with an indefinite metric.

Again we compute the eigenfunctions of J;, and
sec whether we can find an orthonormal family of such
eigenfunctions, with the eigenvalues being all integers,
positive, negative, and zero. Since on the one hand
the spectrum of J; within a UIR of O(2, 1) is simple,
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and on the other hand we have explicitly introduced a
doubling of states via the indefinite metric above, we
would expect to find two eigenvectors of J, for cach
eigenvalue m:

‘[:S‘}Pm,a = mqj‘m,a; m = 01 Ii:l, ﬂ:z, e, d o= l, 2
(3.54)

with the property
(lP.‘m’,a’ 2 \Fm,a) = 6m’m(73)a’a . (355)

We first compute the eigenfunctions of J;, taking J,
from (3.53),

s, = —i[cosh x 9 ~+ & sinh x
ox
+ kv, sinh x:I Y = mtp,;,.

We find indeed two independent solutions which we
choose to be

Y1 = [cosh x]* {lﬂ‘ﬁ)
cosh x

* ((cosh x)™* + (cosh x):)
(COSh x)"‘ — (COSh x)k ’
\
Y2 = [cOsh x]‘i (Mj}
cosh x
((Cosh x)™* — (cosh x)*

(cosh x)™ + (cosh x)")' (3-36)

The column vectors appearing in these wavefunctions
are vectors in the space of the 7, matrices. When we
compute the inner products

* t
(1/)m’,a’9 Wm,a) =J‘ dx Wm’,a’(x)’rsy)m,a(x)
of these wavefunctions, however, we find

(w'm’,l’ W'm,2) = (V)m’,29 wm,l) = 0’
(wm',l’ wm,l) = —(wm’,29 me,z)

4w, if m=m,
ilm—m')a/2
=2~ e,
ilm — m')

if msm'. (3.57)
Thus the expected relations (3.55) hold only for odd
values of m, or only for even values of m, but not
jointly for both. This is exactly the situation encoun-
tered in our analysis of the continuous nonexceptional
UIR’s. Again we introduce a second doubling of the
spectrum of J, . We use the Pauli matrices o, to describe
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representations of O(2, 1) in an O(2) basis—--and thus
obtain Eq. (3.18) which was explicitly derived from
first principles in the main body of the text. More
specifically, we shall use the method of MAR and
Eq. (2.3) to obtain Eq. (3.18).

We define
Ny == Jy,
N, = iJj, 4.1)
Ny = iJ;,

and observe that Ny, N,, Nj generate an O(2, 1)
group which leaves —N? — NZ + N2 invariant. Our
aim is to diagonalize N, .

The eigenstate |m) of J; with eigenvalue m is now an
eigenstate of N,, which we call |1)’, with eigenvalues
A = im. That is

Notd) = iJgim) = im |m) = 1|2), (4.2)

where we define

A=im
and 43)
1A = |m).
The raising and lowering operators defined by
N.=J+iJj=J, 4.4
change the (eigen-) state of J, with eigenvalue m =
—iA to a state of eigenvalue m + 1 = —i(d & i)

Therefore we can use the notation of Sec. 3, and
proceed in a cavalier fashion, to define /(1) and g(4):

N (A =fA+ DA +iy,

N_|2) =g 12— i), (4.5)
such that
N.N_12) = f(Dg(2) [2). (4.6)
The Ihs of Eq. (4.6) is thus
N N_\X = J.J. |m) (4.7a)

=m—P'—G+PIm (@7

= (=il =} -G+ DD (470

=—(A+ 3=+ DA, @479

where to obtain (4.7a) and (4.7c) we have used Egs.

(4.3) and (4.4) and to obtain (4.7b) we have used Eq.
(4.3).

We have, on comparing (4.7) with Eq. (4.6),

(fHg(d) = —(A + §)* — (j + H)? which is Eq. (3.18).

This serves to illustrate the power of the method of

MAR and renders the claims of general validity of this
principle more plausible—at least to the discerning

reader.
5. DISCUSSION

We had asserted that the method of MAR is not
only useful for the purpose of reducing noncompact
groups with respect to its maximal compact subgroups,
but also to reduce noncompact groups with respect to
its noncompact subgroups. To render this assertion
plausible, we reduced O(2,1) with respect to an
O(1, 1) subgroup. Since this problem at the time of
writing this paper had been handled only with global
techniques, we analyzed this problem in great detail
(Sec. 3)—and later (in Sec. 4) obtained the same results
in a MAR.

We have not attempted to formulate the prescrip-
tion in those cases where a state labeling problem
exists. We hope that when the state labeling problem
is solved one could guarantee the method of MAR
to those cases as well.

The crucial fact that is exploited in the whole
approach is that there exists a master analytic
function which describes the representations of
groups that have the same complex extension—and
once this is determined, the representations are
obtained after some algebraic manipulations. The
implication is that a student, armed with the matrix
elements of the generators of the group SU(n) and
SO(n) that are tabulated in Gel’fand and Tseitlin,*
can obtain after some trivial manipulations the matrix
clements of the generators of the groups such as
SU(m —1,1), SO(m —1,1)"* [and perhaps even
SU(n — 2,2), SO(n — 2,2)!]. Then these can be
analyzed to obtain the representations of the group in

question.
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