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ABSTRACT

Quantum field theory is reformulated in such a manner that a
complete set of ocillators for modes with both positive and negative
energies are introduced. The theory leads to the proper connection
between spin and statistics as in the standard formulation, but it imple-
ments the time reversal transformation and the TCP transformation as
linear unitary transformat:ons Negative energy particles in the initial
states are identified with antlpartlcles in the final state with reversed
motion (and vice versd) as far ds scattering ‘amplitudes are concerned. A
‘covariant perturbatlon theory is developed which yields scattermg amph-
tudes which are essentially the same”as in the usual theory.” 2

I. INTRODUCTION

ACCORDING to the theory of rclatlvxty the energy and momentum of a free
partlcle transform among them<e1ves as the components of ‘a four-vector
under Lorentz transformatlons ‘The square ‘of the energy is given by

where m? is a constant, positive zero or negative. For ordinary particles
mis itself taken to be real so that m? is positive. The above equation yxelds
two values for the energy

E= 4 v+ m | (1)

It is customary to take only the positive square root and assume that we
‘have always positive energy partxcles only. Such a pomt of view is con-
$istent with relativistic invariance as long as m? is non-negative; for m?
fnegatrve (faster-than-hght particles) the distinction between positive ard
negatlve energy states is not relatlwstrcally mvarlant since'a ‘suitable Loréntz
transformation can change the sign of the energy. In ‘connection with this
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134 E. C. G. SUDARSHAN

case we had studied the physical interpretation of negative energy particles
and found them to be travelling backwards in time. This suggested an
interesting physical reinterpretation postulate for negative energy particles.

Negative energy particles in classical physics.—Let us consider the
nature of the negative energy particles for non-negative values of m?. In this
case (including m?® = 0) the negative energy particle is a relativistically
invariant concept. In classical relativistic physics the four-momentum vector
and the space-time displacement vector are proportional since the world
line of the particle is a straight line. If v is the velocity of the particle (with
“the speed of light equal to unity) the momentum is given by

p=m(l —v3¥* o

We shall take the displacement 2 x in the same direction (and sense) as the
momentum. Then for positive (negative) energy of the particle, the time
elapsed At would be positive or negative. In other words, negative energy
particles travel backwards in time. They arrive before they start and carry
negative energy. Hence they are physically equivalent to ordinary positive
energy particles going forward in time but in the opposite direction.

To see this more elearly we consider an apparatus A emitting a particle
at time #, which is absorbed by another apparatus B at time f,. For the case

of a positive energy particle 1, > t, and energy is transferred from A to B,
with B gaiging the energy last by A. In the case of a negative energy par-
ticle , > 1 and in the energy transfer between A and B, A gains (positive)
energy and B loses it. Inview of this it is more satisfactory physically to
interpret the phenomenon as the apparatus B emitting a positive energy
particle at time f, which is subsequently being absorbed by apparatus A at
time #,. With this reinterpretation only positive energy particles are involved
in the ultimate physical interpretation and they all travel forward in time.
This reinterpretation (and its quantum theory counterpart) are key con-
cepts in the physics of faster-than-light particles; but we now see that they
can equally well he cancidered for light.like or slower-than-light narticles.

The replacement of the emission (absorption) of a negative energy
particle by the absorption (emission) of the corresponding positive energy
particle (but with reversed momenta) may be thought of as the classical
equivalent of the principle of crossing symmetry in quantum mechanics.

It is known that classical particles furnish irreducible realizations of the
Poincaré group; these realizations are not equivalent to their complex con-
jugates since such a transformation changes the sign of the energy. The
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operation of space inversion is a canonical automorphism of the Poincaré
group and is defined on the positive and negative energy particles separately.
But the time inversion transformation cannot be defined on the Poincaré
group as a canonical automorphism unless we include both positive and
negative energy particles. If we have only positive energy particles we
would have to deal with time reversal as an antiautomorphism. We shalj
not elaborate on these questions here, but only point to the related problem
of time reversal invariance in quantum field theory discussed below.

Negative energy particles in quantum theory.—Let us now consider
negative energy particles in quantum theory. By Ehrenfest’s theorem we
can still conclude that if we consider that on an average a particle must move
in the direction of its momentum, then, negative energy particles travel back-
ward in time. These two features of carrying negative energy and of travel-
ling backward in time can be used to reinterpret the physics to say that the
particles travel forward in time with positive energy but that emissions and
absorptions must be interchanged. The reinterpretation of negative energy
particles in quantum mechanics is obtained by virtue of “ crossing ”

It is necessary to note that crossing is a property of transition amplitudes,
not of quantum-mechanical states. Each particle of negative energy in the
initial state is associated with a positive energy particle in the final state; and
vice versa. We must have both the initial and final states before we can
make the transition amplitude.! And crossing is defined for the transition
amplitudes only.

This implies in turn that while we would like to restrict attention to
only those amplitudes which contain only positive energy rarticles tcth in
the initial and final states as being physical emglitudes, we do not make a
restriction on the states. In this sense the present methcd of dealing with
negative energy particles is different frcm that of Dirac.® In Dirac’s hole
theory of the positron, the states themselves are given a new physical inter-
pretation, but this necessitates a secord quantized theory cteying Fermi
Statistics. The present method is applicable equally to both Fermi and
Bose systems.

To illustrate the content of the proposed reinterpretation ard its enabling
us to consider time reversal and space-inversion as both essentially geometric
linear transformations consxder transition amphthde F (p:q,p:q,) for the
following process:

m ot > T+ N
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where we denote the pion four-mcmenta by p,, p, and the eta four-moment:a?
by ¢, and ¢, Under a space-inversion we get the same process with the
four-momenta changed as follows:

P= pr  P=+p
¢=—q¢ =+d

In this Spmless case the conservatlon of angular momentum in the
collision automatically implies invariance, under space-inversion so thet
F(p'a'ps qz)—-F(pqup g.). All this is quite standard. If we now
consider time inversion we have, in the present formalism, a very similar
transformation: the four-momenta change according to:

pP=+p »” P

S0

9= gq a’

" a®.
This is a purely geoxhetric trénéformatioh.aﬁa we 'gét' the transformed ampli-
tude:
F'=F@'e'p'q")
Again in this Splnless case we have
F* = F.

But F” is a transition amplitude with negative energy particles in the initial
and final states.. Hence by the reinterpretation postulate we should identify
F (p,"q)"ps'q,") with the amplitude for the crossed process: F(— p3" — ¢5
— p," — ¢,"). But this is the same as the reverse process

'”s + "Is —>ﬁ1 h
w1th all the momenta reversed. This result coincides with the standard
(ngner) prescription for transition amplltudes ¢ We have thus demonstrated
the equivalence of our formulation with that of the usual theory, though for
transformations reversing the direction of time the behaviour of the states

is. quite different in the two cases. We shall encounter this circumstance
in our discussion of quantum field theory below.

T T e S IS 2 A
11. SECOND QUANTIZATION OF BOSE FIELDs

Beginning with the discovery of radiation oscillators b;' Planck® and
the statistics of photons by Bose® it has been gradually accepted that the
proper relativistic description of quantum-mechanical systems was by a
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« second-quantlzcd ? theory. The ideas of Planck and Bosc found their
logical completion in the work of Fock who gave an operator formalism
which described a collection of symmetrized many-particle states with a
variable number of particles. The method of Fock? could be extended to
the description of particles obeying Fermi statistics and for relativistic theo-
ries. In the case of the second-quantized Schrodinger field we procecd as
follows: B

Let v, (x) be a complete orthonormal set of one parfiéié‘ wave func-
tions satisfying the relations

T’ ) =3G=» .
§ tn* (%) e (%) &% = S | )

Let a,, a,! be a set of annihilation and creation operators sausfymg tﬁe
commutation (or anticommutation) 1elations

[@n, awli = [an', @nt]s =0 S

[@n, an'z = Snn. ) o €)
Then the quantized fields ¢ (x), $'(x) are defined according to

$ (%) ;'—‘".Z" Gntin (X) 2

¥ =  aatun” () o @

and satisfy the commutation (or anticomfhﬁt;iionf telations

&Lt O] & =8(x—)) . : . (8)
#nr wave functions with spin_an obvious extension of this formalism is
needed. When the basis functions are replaced by another orthorormal set

the creation and annihilation operators undergo a canonical transformation
so that the field commutation (or anticommutation) relations arc preserved,

When one proceeds to relativistic theory the standard ‘method of

“second quantization makes use of a complete set of positive energy solutions
of the "Em ( field. The ficld is then broken up into positive and negative

frequency parts which are respectively associated with anhifiilation and
creation operators:

69 () = Zanfa (68
‘ﬁ(—) (x t) = zan*fn (x» 1)
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where the functions f;, (x, 7) are positive energy solutions of the Klein-Gorden
equation which are orthonormal in the appropriate scal.r product:

2 fuf — Folfud i = Sy Q)

[an, an’] = [an*: an'T] = 0

[an’ an't] = ann‘ (8)
Then
I¢(+) (x, 1), ¢ (x', ,’)] — (2_17)’ f etk (x| e.ia(g_p)tzi_ag ©)
where
¥ VAR

and m is the mass of the scalar particles. From this relation we obtain
B (x, 0, (X' O [d¢ x. 0.8 (X,0]=- 5 (x — x"). (10)

On the basis of this formalism we can establish the theory of the free
(neutral) scalar field and demonstrate the equivalence of this theory with
the canonically quantized Klein-Gorden field 4 (x, 1) with the Lagrangian

density

L {4 m$2}. 1n
With the associated commutation relations

[$(x0, ¢ 0] B(x ) (12)

Despite the relativistic invariance of the theory so obtained, the decom-
position into positive and negative frequency parts is not local.

We propose a new formalism in which the complete set of solutions
(of positive as well as of negative energy) is associated with annihilation
operators just as in the case of the second quantized Schrodinger field;
accordingly we write

1
$() oy f {a(wk) etz L g k) etz -ik.z) g_zc

712\
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The conjugate field is defined by

ét (x) = (Z;I)T/l f {ar (wk) etoxr,~ik.x

talcw—Retsskn, Gk g

The commutation relations are
[a (£ w, k), at (+ w'k)] = 4 208 (k — k') .
[a (wk), a(— w'k’)] = [a(wk), at (— 'k")] = O. 15)

With this choice of the commutation relations we obtain

[$(x), ¢ () =0 e
[$(x), ' )] = 1A (x — y). (16)

AGx—y) = — (2}63 f etk @-Usin o (x2 — LK an

These immediately lead to the equal time commutation relations
8(x*— 1) [$(x) $T ()] =0 .
§(x*— ) [$ (), $T ()] = B (x— ) o (18)

which are the familiar canonical commutation relations. .

We could deduce these commutation relations and equations of motion
starting with the Action Principle® and the Lagrange density

L = {3*¢t2,¢ — m® '} . (19)

The Action Principle states i
id¢ (x) = [¢(x), 5A]; A = [L(x)d'x. . (20)
Considering variations which vanish at the end ‘points we obtain the equa-

tions of motion

(Q*+m)é = (O +mY) ¢+ = 0. '@1)
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Considering variations which do not vanish at end points we get the com-
i 1 srotomos Tan RTUsE bES m e BAK
mutation relations L AT A

N

S(x*  y9) [d(x), ¢t ()] = B (x— ¥)
8 (x* — »°) [¢ (x), % ()] =0

Finally, considering variations of the upper limits of space and time integra-
tion we get the expressions for the generators of space and time displace-
ments, that is the four-momentum. D A T

In particular the energy is given by

H=P 3 {§4+vét ¢ mtédx 2)

which is the familiar expression for a Klein-Gorden field. If we rewrite it
in terms of the creation and annihilation operators wé “get

o B f w {al (wk) a(wk) +a' ( wk)a  whk)} ‘—f—k.

N * m
‘"‘I‘his expression, together with the commutations relations (15) for a (£ wk),
enable us to interpret H as the energy of a collection of positive and negative
energy particles, provided the invariant vacuum state |0 ) is defined by

a(wk) [0) = a(—wk)[0) =0. - 24)

The quantized field is thus equivalent to a collection of particles with either
sign of the energy.

‘In dealing with the scalar field we have made use of quantization accord-
ing to Bose statistics. ~ This ‘hecessary relation between' spin” and statistics
is a consequencé of an invariance requirement on the Action function called

the S-principle. This matter is discussed in some detail in a later section.

SETPERRTIEY

Il INTERACTING FIELDS AND THE PHYSICAL REINTERPRETATION
POSTULATE =~ T

As an illustration of the construction of the theory of interacting fields,

let us consider the coupling of a neutral scalar field with another scalar
field ¢ bilinearly. We write ~ =~~~ G e T

i

Lint = g @' + 9)* (¢t + ).
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Assuming the mass m of the ¢ field to be less than twice the mass M of the
¢ field there are no processes to first order in the interaction (25). To second
order we have the following processes:

M+m—aM+m

M+M—sM+M (26)
The first one is elastic scattering of a ¢-quantum by a J-quantum. The
second one is the scattering of two ¢ quanta with the exchange of a virtyal
p-quantum. To calculate the ¢-¢ scattering we consider the equation
of motion of the ¢ field:

Fra® 1 RAW L ik JRGEAT 0 LN
‘ 27
R @7)
so that 2
P =) +8J Gx—» (0 + M)W )+ ¢())ay

(28)

where G (x — y) is a Green’s function satisfying
(O*+M)G(x—p)=8(x—p) (29)

and ¥, (x) is a solution of the homogeneous equation. Hence the effective
interaction leading to ¢y scattering is

382 [ [ 41 (%) ¢T(x) G (x — ») ¥ (1) ¢ () dxdty (30)
where the factor 4 has been added to compensate for the double counting.

If we denote the ¢ and ¢ momenta by p and g, the effective transition amplitude
to second order is given by

18 ({(p + 9* — M + {(p — ¢')* — M%), (31)

Since the denominators never vanish, we do not have to specify the Green’s
function any further.

To calculate the effective ¢i) scattering we solve the equation of motion
of the ¢ field to obtain

@+ m? (¢ () + ¢ () = g (4T (¥) + ¥ (9)? (32)

to obtain the contribution of the source g (Y + )2 at the point y to the ¢
field at the point x to be equal to

g [ Gx—y; m)[ T + 4 () dy.

. -~
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Consequently the effective yuf interaction is
e (WX $@PEGHE ¥y m@E'G) ()P ddy (33)

If we denote the momenta in the initial state by py, ps and in the final state by
p/. p. the scattering amplitude, in the second order approximation, is:

e {p—p MY ;o p)R— MY (34)
" ‘Both the ¥ (** Compton ™) scattering amplitude and the ¢4 (*“ Moller )
scattering amplitudes have, to the second order in the coupling constant g,
exactly the same expression, as we would have obtained from the standard
theory. It would be necessary to note that the present theory not only
furnishes the amplitudes for the mutual scattering of positive energy particles
but also of negative energy particles. But in this case we make use of the
physical reinterpretation postulate.® A negative energy particle in the initial
(final) state of a transition is to be identified with a positive energy (anti)
particle with opposite linear (and angular) momentum in the final (initial) state.
We find that the scattering amplitudes that we have computed above in the
second-order approximation ~do have this feature. We shall henceforth
implicitly assume the reinterpretation postulate in discussing: transition
amplitude: = without loss of any generality we could restrict attention to
positive energy particles insofar as transition amplitudes are concerned,
In a real sense, only positive energy particles are physical.

N

We have seen that the second-order scattering amplitudes could be
computed ‘without specifying the precise choice of the Green’s function,
since their Fourier transforms never vanished in the physical domain for
the initial and final particles. This is a property of more general class of
processes represented by “tree diagrams”. Of course these processes share

with the simpler second order processes the defect that they do not yield
unitary. scattering amplitudes. , . v

Before proceeding to the systematic computation of the higher order
effects it is desirable to discuss the question of the freedom in the choice of
the Green’s function. We have seen that for the equation of motion

(02+md)e(x) £ (35)
the general solution ‘is
s =d(  Gx—»NEQ)Y (36)
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where ¢ (x) is any solution of the homogeneous equation and G (x — y)
is any Green’s function. For the same Heisenberg field ¢ (x) and the same
equation of motion, the change in the Green’s function entails a change in
the “free field ” ¢(x). The change from G (x — y) to G, (x — y) without
change of ¢(x) implies that ¢,(x) be replaced by ¢o(x) + [ {G(x— )
— Gy (x— »} () dYy. In particular, the change from the half retarded-
half advanced Green’s functions

- 1 ek
Alx ) (2‘7;511) fp————zdk

to the causal Green’s function

1 ik (-1
NAclx  y) = @y sz f_ mE + fe dk

is equivalent to the augmenting of the free field by the terms
3 AvG—nEm)ay
where A® is the symmetric invariant function

AW (%) = (237)3 f eikx. § (k2 — m®) d*k.

Conversely, the change in the Green’s function is entailed by a change in the
asymptotic field.

IV. SECOND QUANTIZATION OF THE DIRAC FIELD
The free Dirac field obeys the equation
(2, M)¢(x) =0.
This equation can be solved to obtain plane wave solutions of the form
P (x) = ug(x)e "
where the four-momentum & satisfies
=4 /M1 k2 Fo

and u, (k) satisfies the equations

ki — M) ur (k) 0.
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The two values of r are related to the two possible values of the helicity:
o . kup (k) = (=) | k| u (k). 44

For the same value of the spatial momentum k there are four solutions,
two solutions with positive energy and two with negative energy.

According to our general principle we define for each value of the
spatial momentum four annihilation operators, two for positive energy and
two for negative energy. We write, accordingly, for the second quantized
Dirac field

P (x) = f {ar (k) uy (w k) e-ik=

+ar (o R (a4 @
3 Siﬂé

with the conj. gate field

Yt (x) = f {a;! (wk) upt (wk) €k i’ £

d’k
232w (46)

+ayt (— w—k) ! (— w—K) ek}

The creation and destruction operators are chosen to satisfy the anticom-
mutation relations

{ar (£ k), a5 (£ 0'K)} = 208 (k — k) 8y
{ar (+ k), as (& 'k)} = {ar (wk), agt (—'k)} \
= 0. (47)
6 o
It then follows that

8(x°— %) (¢ (0, $T ()} = 8(x—y)
e BE—) W@ PON =0
provided we normalize the solutions #,(4wk) by ‘
iyt (k) uy (£ k) = 2 L=t (50)

In writing down the second step of (48) we have made use ofthe completeness
of the four solutions u, (4-wk) for a fixed value of the spatial momentum
k. Note the fact that the anticommutators of the annihilation and creation
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Sred-oovy

+ ar (0 k)t (— 0 —R) ¢47) 21’3- 45)

with the conj.gate field §

gl (x) = f (ay! (wk) upt (wk) K®

d*k

+apt (— w—k) upt (—aw—=k) e“k‘r} T30 (46)
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) == (. 4n
b
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operators are positive for both positive and negative energy states.- *This
is to be contrasted with the commutators of the annihilation and creation
operators for the spin 0 field which change sign with the sign of the energy.
This difference is to be traced to the difference in the nature of the scalar
product: for the spin O case the scalar product changed sign with the sign
of the energy, while the spin $ scalar product (50) does not change sign with
the sign of the energy. :

The general anticommutation relations can also be written down from
the basic anticommutation relations for the annihilation and creation opera-
tors. We get

g, 4y} O
1 —ik(Z-y) t
YOI ON G JEETY (k) ! ()
EV (6 Kyt ( 0=k} G
But

Zup (wk) ;T (k) = y° (v k+M), k° + VK EME

Zu(: Ky ut(o—k) =9"(y k— M.
Hence
, 2 N,
B FON (% 2+ M) ia (x— )

S(x ) (5D

where /. (x — y) is the invariant commutator function for the scalar field.
The function S(x — y) has the properties

8(x* WS(x ) d(x
Sty x) +Sx y

(’.7#5‘;7‘ M)S(x——y)=0? (52)
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" The fundamental equal-time anticommutation relations as well as the
equations of motion can be deduced from the Action Principle starting with
the Lagrangian density -

i ) 0
L) =5 [Pt — 5] MR
and considering anticommuting variations.

The general equation of motion for the Dirac field is of the form
L, O
(s M)¥® =16

general solution
B (X) = P (x) + ] £(x — »)n () dYy (53)

where G (x — ») is any Green’s function satisfying the inhomogeneous
cquation

(i‘y" b-i a M) fo(x)  8(x). (54)

For the same field ¢ (x), if we change the Green’s function & (x — y) we must
change the free field ¢, (x). The two special choices for & (x — y) are the
half retarded-half advanced Green’s function

- A D -
g(x J’): (IY“ IxP -+ M) A (x y) (55)
the causal Green’s function

:éc (x— ») (17“ S%ﬁ M) Ne (x— p). (56)

The change from ¢ to Gc for the same Heisenberg field ¢ (x) can be generated

by a change in the free field from ¢, (x) to ‘
bo@ +3J SP(x— 10N dYy

where

50 (1) = (5 + M) A9 () (57)



A New Formulation of 'Réiatz'v’i&t."'é”Quantwn Field Theory

The freedom in the choice of the free field o () is thus cqmvalent to the
freedom in the choice of the ‘Gréen’s function.

"With the formalism as developed so far we can compute the lowest
order (second -order) predlctlons of the Yukawa interaction -

Lins = g¥1ro0o | 6

for Fermion-Fermion and Bos.on-Fermion‘ scattering._ Here ¥ isthe self-
conjugate fermion field containing both creation and annihilation parts

¥y (x) = $p (x) + Brs‘)[’;r (xy

where B is a matrix so chosen that B,g" transforms under Lorentz trans-
formations like ¢,. This matrix is dependent on the reprecentation chosen
for the Dirac matrices; in the Majorana representation it is the unlt matrlx
More generally it is defined by

/

B (opw)* B—l = - gh?
BG*BL  — o

The second of these conditions, of course, implies the first one. There are
no essential difference in this calculation from the corresponding calculation
that we carried out in the last section for boson-boson scattering and we
shall not reproduce the calculation here.

THe CONNECTION BETWEEN SPIN AND STATISTICS

We would like to discuss the Action Principle and the relation between
spin and statistics.® To provide for a uniform treatment we shall arrange
to have the equations of motion to be of the first order so that the Lagrangram
are linear in the * velocities”. We denote the field variables by ¢, (x) where
r Tuns over the many components of the field ¢ and write the Lagrangian
density in the form '

L(x) +T*)ns {¢7pr¢s dubrldst  H(x)

where H (x) contains no dependence on the gradients of the field components,
In particular it includes the bilinear mass terms. The matrices I'* are £o
chosen that the Lagrangian density is invariant under Lorentz transforms -
tions. This Lagrangian density has the shqrtcozmng that it treats ¢ and ¢t
in an uasymmetric fashion.
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Since ¢ furnishes a :epresentation of the complete Lorentz group (whieh
is in general reducible and not necessarily unitary) ¢! also furnishes a repre-
sentation of the Lorentz group. For any collection of finite dimensional
representations, ¢ is equivalent to the representation furnished by ¢.
We shall consider finite dimensional representations only here. If the
representation furnished by ¢ is denoted by D (A)t

br (x) = Drg (A) ¢s (A™1X) (61)
then the representation by ¢! is of the form
$rt () > Drs* (A) $sT (A7)
The said equivalence implies
EraDns (A) = Drn* (A) Ens- (62)
If we therefore write
b = (Ersds!

then ¢ transforms like ¢ and we may rewrite the above Lagrangian dens1ty
in the form

L (x) = $ (EI*)rs (¢r * %us — %y . b5) — H (x).

In this form we can implement a suitable symmetrization of L under the
interchange of the creation and annihilation operators that is of the fields
é, . We shall require that the Lagrangian density and, hence, the Action be
invariant under the replacement®®

¢ (x) = (— x)
$ (x) > ¢ (— x). : (63)

We shall refer to this requirement as the S-principle. The above Lagrangian
density does not satisfy this property. We can, however, symmetrize it so
as to satisfy the S-principle, to obtain:

L (%) = 4 (E%)ys {rduds — dubrbs — brduds -+ dubribs} — H ().
(64)

Henceforth we shall consider (64) as the Lagrangian density from which the
Action function would be constructed,
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The Action Principle now states that all variations in the “dynamical

variables are generated by the changes in the Action: . .

A= [ L(x)dx
so that

i8¢y (x) = [¢r (x), 3A] v

18r (x) = [r (x), 3A] (65).
We shall consider two possibilities for the field variations: either that they
shall commute with all the field variables or that they shall anticommute
with all field variables. The first possibility leads to commutation relations

and the second to anticommutation relations. The Lagrangian density
(64) may be rewritten in the form

L (x) = 3 (ET¥)rg {$rdups — dufrps} 0.
+ 3 (El™)gy {dadsthr — ‘l’sby'ﬁr} — H(x).

Considering variations which vanish at end points we get the cquations of
motion. By considering end point variations alone we get, according to
(65),

iBr (x) = (Bns [ [dr (x), $n () 385 ()] 8 (x° — %) dty
+ 3 (EMsn [ [br (x), 865 (0) ¥n ()] 8 (x* — y9) diy
By () = — 3 (EMns § [fr (%), 8 () $5 ()] 8 (2 — ) @ty
— 3 (Esn [ [$r (%), 85 (1) 80 ()] 3 (x° — D) dty.
(66)

For variations commuting with the field variables we get from either of the
above relations: '

3O — Y){(ET)ns + (EMn} [ (x), P ()] = 8,58 (x — y). (67)

If on the other hand we had considered variations which anticommuted with
the fields we would instead get the anticommutation relations

38 (x* ~ ) {(BI)ns — (ETsn} {Br (%), Y 0} = 8,58 (x — »)u (68)

The relations (67) would become inconsistent if EI® is antisymmetric ; and
(68) would become inconsistent if EI™ is symmetric. Hence the commuting
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field should have EI® symmetrlc, and could then be subjected to Bose
statistics. While the anticommuting field should have EI™® antisymmetric.

The symmetry of the matrix EIis now to be studied. The transforma-
tion of “strong reflection” in which the space time co-ordinates one all
reversed is a proper Lorentz transformation and can be thought of as a
rotation through = around any space axis and a complex pure Lorentz trans-
formation equlvalent to a “rotation” through im. Hence the transformation
of a Dirac feld is of the form - R

¥ (x) = iygh (— %). N )
On the other hand, the matrix I'* is given by y%* so that
ETl* = iy%%ty;

which is antisymmetric (independent of the representation of the Dirac
matrices). It follows that a Dirac field ought to be quantlzed accordmg to
Fermi statistics. For a Klein-Gorden field the matrix is again simply given
because it leaves scalars (and second rank tensors unchanged but changes
the sign of vectors. On the other hand the matrix connects the scalar with
the vector and is antisymmetric. Hence EI'* connects scalars with vectors
and is symmetric, so that a spin 0 field should obey Bose statistics.

More generally, since all finite dimensional representatxons of the
Lorentz group can be obtained as totally symmetric multispinors it is possible
to show that EI'* is symmetrlc for tensor representations and antisymmetric
for spinor représentations. Hence the basic commutation relations (67)
and (68) assert that tensor fields should be quantized according to Bose
statistics and spinor fields according to Fermion statistics. Thisis the funda-
mental theorem on the relation between spin and statistics.”® As deduced
here it is purely a consequence of the Ac’uon Principle, and the S-principle.

Since no reference was made to the s1gn of the energy density or the
charge density these considerations apply equally well to our formulation
of quantization or to the more conventional method quantization.

VI. REDUCTION OF THE S-MATRIX

To be able to treat the interaction to higher approximations it is necessary
to develop a systematic perturbation theory and to provide a scheme for the
reduction of the S-matrix. A heuristic method of developing this is to
proceed to the interaction picture and consider the expression for the S-matrix:

T{exp. i [ W (x)d} - 7)
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where W (x) is the interaction in the interaction picture. If we rewrite this
expression in a normal ordered fashion the coefficients of the various terms
are the (unrenormalized) expressions for the S-matrix elements for the
various processes. This reduction is facilitated by the use of Wick’s theorem
and the use of the contraction functions. But before doing that we recall
that there is still some freedom in the definition of the asymptotic “in”
fields in terms of which the particles are introduced into the field theory.
We make the choice? -

1 A
B =) 3 f ADG ) £0xay
b ) = ) — 1 SV x—») 7 () dYy
n \~ (i 4 Y) qy)a’y
where ¢, and ¢, are (the annihilation part of) the Boson and Fermion ﬁélds
and £(»), 7(») the sources of the Heisenberg fields. o
(Q*+mY) ¢ (x) = £(x)
(% — M) § (x) = 9 (x).

This choice of the asymptotic field is equivalent to an apparent change of
the interaction. For example, for the Yukawa interaction

Lint (x) = g¥7 () y*P () @ (%)
E(x) =g¥T ()Y ¥ (%)
7(x) = gP (x) ¥ (x)
we get the effective interaction

W1 (x) = g¥T(x) ¥ (x) @ (x)

+EV PP [ A0G DP0) P o)y

+ £ 91 (9 90 () f SU(x ) ¥() & (3) .

Let us now compute the contraction functions. The Boson ﬁeld‘sfi‘q"
the interaction (25) occurs only in the¢ combination T

P (%) = ¢1 (x) + ¢ (x)
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Then
0060, 2 [$t @ s + [ ), ¢T 0]
=IiA(x .

the contraction function

(5 7) = (0| T(2 )2 () |0)
=le@ WA W

coincides with the half retarded-half advanced Green’s function. In contrast,
in the standard formalism the contraction function is equal to the causal
Green’s function. Similarly for the Fermion field we have the contraction
function

o (x,3) = (0| T(¥X)¥() |0
=3e(x—))Skx—y) (75)
which is again the time symmetric Green’s function.
We have already seen that the freedom in the choice of the asymptotic
field, entails a freedom in the choice of the Green’s function.. In parti-

cular the choice of the asymptotic ﬁelds bin, Pin accordmg to (72) yields
effective contraction functions

rE)=rE )T AV M= cE—)

- ! (L : ‘s
eV olny 357 ) S(x v (76

and the effective interaction
W (x) = g¥1 (x) y*¥ (x) D (%). (77

This may be verified by direct calculation for the second and fourth order
matrix elements. A combinatorial argument can be constructed to show
the validity of this effective contraction functions to all orders in pertur-
bation theory. ' ,
We have thus recovered, in the present theory, the (unrenormalized)
expansion of the scattering amplituc}e as a power sgries in the coupling
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constant.!> 12 The result so obtained contains all the familiar infinities of
perturbation theory and is therefore without precise mathematical content.
But the heuristic method of renormalization of the perturbation expansion
developed within the standard formalism can be transplanted into the present
formalism to provide a renormalized perturbation expansion in which eack
term is finite.

The renormalized perturbation series yields an amplitude which is unitary
to the order of approximation desired. But the essential point is that the
unitarity relation is true when only the positive energy particles are included
in the intermediate states. This remarkable result is consistent with our
assertion that only positive energy particles are physical.

VII. DISCRETE TRANSFORMATIONS AND THE TCP THEOREM

The formulation of quantum field theory given above is invariant under
relativistic transformations belonging to the proper orthochronous group.
We now wish to consider the discrete transformations of space inversion (P),
time inversion (T) and charge conjugation (C) and the invariance of the
theory under such transformations.

Space inversion.—The space inversion transformation should be viewed
as a purely geometric transformation in which momenta and co-ordinates
change sign but energies and angular momenta remain the same. For the
scalar field creation operators this implies

a(w, k) — a(w, —k)
a(—w, k)—>a(— w, — k)

independent of whether the corresponding particles are self-conjugate or
not. This implies, for the scalar field

¢ (x, 1) — ¢ (—x, o).

For a 4pseudoscalar field there is an additional phase factor of — 1. To
include this also, we may write this ‘more generally in the form

S D—>npp(—x, 0. mp=£ 1. 78)

In the case of a vector field there is the additional geometric featurvé'dis-’
tinguishing the space and time components of the four-vector.

A (x, £) =>1p A%(=x, D) . .
A(x, )= —np A(—x, t) : (79)
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Finally for a spinor
¢ (%, 1) — " (—x, 1) : (80)

To complete the definition we must exhibit a unitary operator U (P) which
implements these transformations on the field operators and leaves the
vacuum unchanged so that S

U®)[0)=]0)
U@ DUIP) wpé  x 0, et

A formal construction of such an operator U (P) can be carried out easily
we note, for example, that the operator

U, €xp. ’; (a'(@ B mpat(e K} {a(wk) — 9 alw, —k)}

{a' (- wk)— npa’ (- w—k}{a(—wk) mnpa w—k)})

has the property
Ula (:t w, k) Ul—l = Np a (:{:w k)
Uy | 0)= ' 0).

A product of such factors would serve to define U (P). Since the behaviour

of the fields under space inversion are the same as in the standard formula-
tion, we shall not enter into a detailed dlscussmn of the space inversion
invariance of various interactions.

Particle conjugation.—The operation of charge conjugation implies
the replacement of particle creation (annihilation) operators by antiparticle
creation (annihilation) operators. When the particles are self-conjugate
(i.e., the antiparticles are the same as the particles) the charge conjugation
transformation reduces to a real phase factor n¢ = £ 1. For a general
field we have s ,

a7 (& o, k) = by (£ o, k)
for ‘the non-self conjugate case; ‘and
ar (:’h w: k) —>Tclr (:h w, k)

or the self-conjugate case. No loss of generality is entailed by not including
a_phase factor in the non-self conjugate case. We should now construct a
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unitary charge conjugation operator U (C) which would implement
transformations unitarily and leave the vacuum invariant:

U©Oar (£ @, ) UC) = br (£ w, k)
U@©1lo)=|o0)

Here again the transformations have the same structure as in the standard
formulation. -

It is worthwhile to point out the elenientary fact thét any given non-self-
conjugate field can be expressed as a definite linear combination of self-
conjugate fields with opposite charge conjugation phases. We write

A I e TG R e o)

Then
U€)aqU(C) = + q
U(C)aU(C) = 4
illustrating the statement.
In terms of the self-conjugate fields we may write
U ¢(x. HUC) ned(x, 1)

for boson fields and fermion fields alike. We could construct non-Hermi-
tious fields

$ () = ;}2 (O (x) + ip® (x))
(x) = 5 (B0 () — 4™ () (84)

which would transform according to

UO$® U O =@
U© 4 () U™ (C) = 4 ().
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So far the fields ¢, ¢ contain only annihilation operators. Their Hermitian
adjoints which contain the creation parts transform according to

UC)¢' (x) U (C) = 4" (%)
UO¢ @) UO) = ¢ ()

with

] (,g) = T/l’i ‘¢<1>'T () — i (%))

o (x) = ;}-2 (07 () + 2T ().

~

For a Boson field, the crossing symmetric combination which enters the
interactions is

D (x) =y (x) + ¢

while for the Dirac field it is

Dy (x) = ¢r (x) + Brs'l's'r (x).

These are the generalizations to non-self conjugate fields of the self-conju-
gate expressions used in (59) previously. Now

D (x) = dW (x) + iP? (x) _

Dy (x) = P, (%) + iP,® (x) (86)
where all the fields which appear on the right-hand side are self-conjugate
fields. The charge conjugation transformation yields

U () Ut = oF (x)

UP, (x) U = By Dt (x)

U™ (x) Ut = (=) 0™ (x) 87)
Using these expressions we may study the invariance of interactions involving
conjugate or non-self-conjugate fields under charge conjugation. As an
example, the interaction (25) that we have considered in an earlier section

is charge conjugation invariant provided ¢ (x) is even under charge conjuga-
tion.

. Time inversion.—The discrete transformations. like time inversion (T)
and ‘strong reflection (TCP) are treated as antilinear transformations in the
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standard formulations of quantum field theory. The reason for this is that
if these transformations are treated purely geometrically two difficulties are
encountered. The first one is that under a geometric transformation
involving time inversion the energies, being fourth components of the energy-
momentum four-vectors, should change sign while the momentum would
not. However, the notion of viewing the time evolution of a physical system
in reverse would lead us to expect the momenta to reverse while the energies
retain their sign. The second difficulty is that for finite-component Boson
fields the canonical commutation relations change sign under such a geo-
metric transformation. To avoid these difficulties time reversal transforma-
tion is defined as an antiunitary transformation in the standard formula-
tion of quantum field theory. The transformation has the property of inter-
changing initial and final states, reversing all momenta, but preserving all
helicities and energies and interchanging “in ” and * out ” states. In parti-
cular, on a single particle state the behaviour of the time reversal trans-
formation has the action

at (@, K)10)—(0]a(w, K. (88)

No generality is lost in not including a phase factor.

In the present formalism none of these difficulties are encountered. The
energy spectrum contains both positive and negative energies and the geo-
metric transformations do not introduce any contradiction with the energy
spectrum. In view of the nature of the commutation relations

[a (£ o, k) at (& o', k)] =28 ( KN
which change sign with the sign of the energy, the geometric transformation
¢(x,)—>d(x,— D

for the Boson field preserves the commutation relations, As long as we
deal with self-conjugate fields it appears that the geometric transformations .

d(x. ) —»nd(x, D

x; 1) = iy, ¢ (x, — 1)
Al(x,D— 2A%x,~- D
A(x. 1) — nA (x,

or something fairly close to it can be defined to represent time inversion.
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Closer study shows that the transformation so defined with # = - 1
are applicable to self-conjugate fields which are even and odd under charge
conjugation. In other words, the transformation that we have defined is
not T but TC. This can be seen by considering the transformation (89)
for a non-self-conjugate field, say the scalar field as transcribed in terms of
the annihilation and creation operators:

a(t w k)—>a(Fw k)
at (4 o, k) — a' (F o, k). €29)

Hence the transformation of the one particle state is according to:
at(w, k) |0y —>at(— w, k)| 0).

In other words a positive energy particle in the (initial) state is transformed
into a negative energy particle in the (initial) state. By the physical reinter-
pretation postulate this is equivalent to a positive energy antiparticle in the
final state. In other words the net result is as if the transformation is:

at (wk) |0y —> (0| b (w, — k). : 92)

Comparing this with the behaviour (88) of the time reversal transformation
in the standard formulation we see that the transformation is really TC and
not T. Since C has already been defined, if we so choose, we can define T
by considering

T =(TC).C. (93)
The time reversal transformation"so defined is unitary in contrast to the

antiunitary nature of the transformations in the standard formulation of
field theory.

We note that while a time reversal transformation T can be defined by
(93), it is the TC transformation rather than T that has a simple geometric
behaviour. For self-conjugate fields the two differ by a real phase factor.
" This is relevant in view of the geometric nature of TCP transformatien and
the TCP theorem.'?

Strong reflection and the TCP theorem.—Let us now consider the geo-
metric operation

$() — (=
() = iyah (= 2)
A* () > — AR (= %)

(94)
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which corresponds to reflection of all the space time axes. It could be seen
to be an element of the complex Lorentz group. Any theory involving finite
component fields which is manifestly invariant under the real Lorentz group
is also invariant under the complex Lorentz group.'® Under such a trans-
formation any manifestly covariant local Lagrangian density transforms
according to

L (x)—L{~— x). - (95)

Hence the Action function is unchanged. This is the TCP Theorem in our
formulation of quantum field theory.

To see the physical implications of this geometric transformation we
study the special case of the scalar field

G- ¢ (x) > ¢ (— x). (96)

We shall take this field to be non-self-conjugate. Then transcribed in terms
of annihilation operators we get

a(w, B)—>a(—w, — k) | ©7)
so that the one-particle states transform according to |
at (0, k)| 0) —>at (— w, —k) [0). | (98)

By the physical interpretation postulate we get the hégative energy particle
(in the initial state) is to be identified with a positive energy antiparticle with

" opposite momentum {(in the final state). The net result is then as if we

defined the transformation as
al(w, k) |0)—> (0| b(w, k) 99

which is the conventional TCP operation. )

Just as in the case of the time reversal operation, the TCP operation is
represented by a unitary operator within the present version of quantum
field theory. :

VIII. CONCLUDING REMARKS

In the preceding sections we have presented a reformulation of quantum
theory of fields which has several simplifying features as compared with the
standard formulation. The basic idea is to use Fock’s method of associat-
ing the entire field with the wave functions of one-particle states with both
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‘positive and negative energy states. The conjugate field is now a field
containing only creation operators with both positive and negative energy
states. The theoretical framework so obtained is in accordance with cano-
nical commutation relations and the Action principle.

The negative energy particles that are described by the field demand
a physical interpretation as positive energy antiparticles travelling in the
opposite direction. This interpretation is suggested "by the study of the
physics of classical negative energy particles. The physical reinterpretation
postulate is of fundamental importance in the present version of quantum
field theory.

The present theory can represent time inversion and TCP as linear
(unitary) operators. The physical implications of the invariance under
the various discrete transformations as far the transition amplitudes are con-
cerned is the same as in the usual formulation.

It may be a small advantage, but the present formulism can also be
employed for the quantum field theory of faster-than-light particles.

By studyirig a simple Yukawa interaction we have endeavoyred to show
how a covariant perturbation theory can be constructed. The perturbation
expansion so obtained contains divergent quantities and has to be renorma-
lized, or regularized using an indefinite metric to obtain finite and meaningful
answers, K

The usual relation between spin and statistics can be derived in this ver-
sion of quantum theory of fields.

Because of the negative energies occurring in this theory the spectral
postulate of axiomatic field theory's is violated. As a consequence the
standard results of axiomatic field theory no longer hold. As an example
we see that local fields annihilating the vacuum can be constructed. Despite
this the essential result of TCP invariance can be deduced within the present
framework. The theory has local fields satisfying local commutation
relations. ’

The point of view that only the positive energy particles need be con-
sidered physical receives mathematical confirmation from the unitarity rela-
tion satisfied by the perturbation theory. scattering amplitude. In the unitarity
sum-over-intermediate-states only those states containing exclusively positive
energy states need be included.
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Since the perturbation theory amplitude in the present theory is identical

with that of the usual theory, dispersion relations of the usual kind are
satisfied by the scattering amplitude. In other words while the Wightman
functions in the present theory do not have the * future-tube > analyticity,'®
the scattering amplitudes may be expected to have the wusual analytic
properties. \
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