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ABSTRACT

Quantum field theory is reformulated in such a ttlabner that a
complete sef orocil\atois foi modes with both positive and negative
energies are introduced. The theory leads to the proper connection
between spin and statistics as in the standard formulation, but it imple-
m,ents "the time reversal transformation and the TCP transformation as
linear unitary transformations. Negative energy particles iri the initial
states are identified with iiritiparticl'es in the'finaf state with reversed
inotioD(and vice ver$a1a.s far as"scatteringampli"t'udes ate coriterned. -A
coviitiari't periurbiiiontheofy is developed which yields'sca;tteting ampli-
tildes which are ess"entiAIly thesamec. as in the usual theory. ,

I. INTRODUCTION
c- ° , 00

ACCORDING to the theory of relativity the energy and momentum of a free

particletran~form among themselves as the components of a four-veclor
u~der Lorentz tfansformatlolis', °The square 'orthe"eriergy is given by'

"-~ " 0'.' c! " c, ,

El =pi + ml

wbere m2 is a constant, positive zero or negative. For ordinary particles"

m'is itself taken to be real so that m2 is positive. The above equation yields.

~wo values for the energy

E = :!: vPT:t:"m2 (I)
,

It is customary to take only the positive square root and assume that we
have always positive energy particles only. Such a point of view is con-
'$istent with relativistic ih~.ariance as long as 1n2 ishon-negati\e ; for ms
:'negative (faster-than-light particles) the distinction betYveen positive at1d
negative energy states is no( relativistically invariant since. a suitable Lor~ritz
transformation can -change the sign..cof the energy~ In connection with this
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case we had studied the physical interpretation of negative energy particles
and found them to be travelling backwards in time. This suggested an
interesting physical reinterpretation postulate for negative energy particles.

Negative energy particles in classical physics.-Let us consider the
nature of the negative energy particles for non-negative values of mi. In this
case (including m2 = 0) the negative energy particle is a relativistically
invariant concept. In classical relativistic physics the four-momentum vector
and the space-time displacement vector are proportional since the world
line of the particle is a straight line. If v is the velocity of the particle (with
the speed of light equal to unity) the momentum is given by

p = m (I -v 2)-! .v-

.dirrction (and sense) as the

t~"'

We ..~ .-.~.
momentum.
elapsed .

"- ~.- -.-, ,
--""-- .-energy. Hence they are physically equivalent to ordinary positive
energy particles going forward in time but in the opposite direction.

To see this more elearly we consider an apparatus A emitting a particle
at time t1 which is absorbed by _&.~. .~ B at time t2. For the case
of a positive energy 1"IHrticle t2 > t~ is transferred from A to B,

with B gair
ticle t1 > t;. in ~0/ ~ -
energy and B loses it. In view of this it is more satisfactory physically to
interpret the pheno~enon as the apparatus B emitting a positive energy
particle at time t2 which is subsequently being absorbed by apparatus A at
time t1. With this reinterpretation only positive energy particles are involved
in the ultimate physical interpretation and they all travel forward in time.
This reinterpretation (and its quantum theory counterpart) are key con-
cepts in the physics of faster-than-Iight particles; but we now see that they
can equally well be considered for light-Iike or slower-than-light particles.

The re~]acement of the emission
particle by t]
particle (but with
equivalent of ---

It is known that classical particles furnish irreducible realizations of the
Poincare group; these realizations are not equivalent to their complex con-

jugates since such a transformation changes the sign of the energy. The
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operation of space inversion is a canonical automorphism of the Poincare
group and is defined on the positive and negative energy particles separately.
But the time inversion transformation cannot be defined on the Poincare
group as a canonical automorphism unless we include both positive and
negative energy particles. If we have only positive energy particles we
would have to deal with time reversal as an antiautomorphism. We shal1
not elaborate on these questions here, but only point to the related problem
of time reversal invariance in quantum field theory discussed below.

Negative energy particles in quantum theory.-Let us now consider
negative energy particles in quantum theory. By Ehrenfest's theorem we
can still conclude that if we consider that on an average a particle must move
in the direction of its momentum, then, negative energy particles travel back-
ward in time. These two features of carrying negative energy and of travel-
ling backward in time can be used to reinterpret the physics to say that the
particles travel forward in time with positive energy but that emissions and
absorptions must be interchanged. The reinterpretation of negative energy
particles in quantum mechanics is obtained by virtue of " crossing ".

It is necessary to note that crossing is a property of transition amplitudes.
not of quantum-mechanical states. Each particle of negative energy in the
initial state is associated with a positive energy particle in the final state; and
vice versa. We must have both the initial and final states before we can
make the transition amplitude} And crossing is defined for the transition

amplitudes only.

This implies in turn that while we would like to restrict attention to
only those amplitudes which contain only positive energy particles 1:cth in
the initial and final states as being physical amplitudes, we do not make a
restriction on the states. In this sense the present methcd of dealing with
negative energy particles is different frcm that of Dirac.3 In Dirac's hole
theory of the positron, the states themEelves are gi\en a new physical inter-
pretation. but this necessitates a secot:d quantized theory c1:eying Fermi
Statistics. The present method is applicable equally to both Fermi and
Bose systems. -

To illustrate the content of the proposed reinterpretation ar:d its enabling
us to consider time reversal and space-inversion a\s both eEsentially geometric
linear transformations consider transition amplitude F (Plq1P~q2) for the
following process :

frl + '11 -+ fr. + '1.
.io "'; ..'
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where we denote the pion four-mcmenta by PI' PI and the eta four-momen~.
by qI and q2' Under a space-inversion we get the same prccess with the
four-momenta changed as follows :

p
,p =

.~

pOl = +pO

qOI = + qO.
,

q=-q

, ...
In this spinless case the conservation of angular momentum in the

collision automatically implies invariance, under space-inver&ion EO ttr.t
F (Pl'ql'P2'q2') = F (PlqlP.qJ. All this is quite standard. If we now

consider time inversion we have, in the present formalism, a very similar
transformation: the four-momenta change according to :

pO

no,

pOll

DO"

+p,,-p -

Nq = q
"' ,c ,

This is a pUrely geometric transformation and we get the transform~d ampli-

tude:

FN = F (PlN qlN P ~N q")

Again in this spinless case we have

F"=F.

But FH is a transition amplitude with negative energy particles in the initial
and final states. Hence by the reinterpretation postulate: we spQpldidentify
F (PI"qI"P2" q2H) with the amplitude for the crossed proc~s$ : F ( -Pa" -q."
-PI" -qI"). But this is the same as the reverse process

", .

1T; + ';i~1Tl '1}1

.' ..".". ...
WIth all the momenta reversed. This resUlt coincides with the standard
(Wigner) prescription for transition amplitudes.4 We have thus demonstrated
the equivalence of our formUlation with that of the usual theory, though for
transformations reversing the direction of time the behaviour of the st~tes
~$ quite different in the twQ c~ses. We .sha~l encounter this circumstance
in our discussion of quantum field theory below.

',};ii;.,,' 'i,jf;;0:li:~I.J :")c;",' ..-",,~
SECOND OUANTrzATION OF HOSE FIELDsTI.

Beginning with the discovery of radiation oscillators by pr~~ck6 and
the statistics of photons by Bose6 it has been gradually acce:ptcd that the
proper relativistic description of quantum-mechanical systems was by a



~
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I...c .., ,
..second-qu~ntizfd ..theory. The ideas of Plapck and Bos~ ,found their
logical completion in the work of Fock who gave an operator foiIrialig'm
"hich described a collection of symmetrizfd m~I:1Y-particle , st~tes with a
variable number of particles. The method of Fock7 could be extend(d to
the description of particles obeying Fermi statistics and for relativistic tl!~Q;-
ries. In the case of the second-quantized Schrodinger field we proceed as

follows:
., , c

Let 1'11 (x) be a complete orthonormal set of dhe particle' wave func-

tions satisfying the relations

E un (x) U11- (y) = S (x -y)
.
J U11 * (x) U11' (x) d3x = Sn11'. (2)

, " -
Let all. an t be a set of annihilation and creation operators satisfyiDg tJi!e

commutation (or anticommutation) IeIations

[an. a1~'1f = [ant. an't1:J: :;;; 0 ,

[an. an,t]:J: = 8nn'. (3)

Then the quantized fields 1/1 (x). I/It (x) are defined according to ."'

~ (x) ;;:= E a~lIn (x)
. , , , ,

I/It (x) = E an tun- (x) (4)
M..

f ..,~ , -", '. " 'c: c
and satisfy the commutation (or anticommutation)' 'telatiom

[ifs (x], ifst (y)] :I: = S (x -y). (5)

'; ,
For wave functions with spin an obvious extension 6r this formalism is

set

the ,. , "'
so that the field

: ."""' ~ When -

1'-J")"' !

,-

of
";
tn

v. .~..; spiii v ~_4_. -~- , ~--~ ~ ,~ ~..'- ..~ "
frequency parts which are respectively associated :\Jit11 arihi1iilatio; atld

creation operators:

c/>(+) (x, t) = 1: an f n (x, t)

cJ>(-) (x, t) = 1: an t f n. (x, t)
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where the functionsfn (x, I) are pos1tive energy solutions of the KJein-Gorden
equation which are orthonormal in the appropriate scal;:.r product :

2
(7)

o o
ifn*ln' -fn'in'} d3X = 871"'

[an. an' ] = [an t,

[an, an't] = Snn'

Qn.t] = 0

(8)

Then

e-i.(t-t/) ask

2W (9)

where

+ v m~+k'

and m is the mass of the scalar particles. From this relation we obtain

r~(f<1>(+> (x, t). cb- (x'. t)l x. t). I/>( (x', t)l = - i8 (x -x'). (10)

On the basis of this formalism we can establish tlie theory of the free
(neutral) scalar field and demonstrate the equivalence of this theory with
the canonically quantized Klein-Gorden field 4> (x, I) with the Lagrangian
density

L ! {014 </>01£</>m'cf>I}. (11)

With the associated commutation relations

i8 (x[ <1> (x, t), «/I (y, t)] y) (12)

Despite the relativistic invariance of the theory So obtained, the decom.
position into positive and negative frequency parts is not local.

We propose a new formalism in which the complete set of solutions
(of positive as well as of negative energy) is associated with annihilation
operators just as in the case of the second quantized Schrodinger field;
accordingly we write

w- k) eiwX.-ik.X} 4!-'!
2w

I"~~

4> (x)



,~

~~r~

d*k
+ at (- (I) -k) e-iW%.+ik.Z} ~ -/"1- .(14)

"V.. (I)

The commutation relatiofls are

[a (:f: (I), k), at (:f: (I)'k')] = :f: 2(1)8 (k- k')

[a «(1)k), a ( -(I)'k')] = [a «(1)k), at ( -(I)'k')] = 0. (IS)

With this choice of the commutation relations we obtain

[4> (x), 4> (y)] = 0

[4> (x), 4>t (y)] = 1.6 (x- y). (16)

I f d3k .6 (x- y) --(211)! eik.(:1:-1/)sin (I) (x' -yO)~ .(17)

These immediately lead to the equal time commutation relations

8 (XO -yO) [4> (x), 4>t (y)] = 0

~ (XU -yO) [4> (x), ~t (y)] = i8 (x -y) (1.8)

which are the familiar canonical commutation relations.

We could deduce these commutation relations and equations of motion
starting with the Action Principles and the Lagrange density

L = ! {()}1.4>t(),,4> -m2 4>t4>} (19)

The Action Principle states

io4> (x) = [4> (x), oA] ; A = f L (x) d4X. (20)

Considering variations which vanish at the end points we obtain the equa-
tions of motion

(02 + m2) 1/1 = (08 + ma) ~+ -0. '(21)

A New Formulation of Relativistic Quantum Field Theory 1~~
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Considering variations which do not vanish at end po~~s we get the co~:'..\" , r .'",c' , "'," " ...m utatlon relatIons ° ° !",., Y"' 0",'0
\

yO) [«I> (x). ~b «I>t (y)] = i3 (x- y)8 (;xO

8 (XO -yO) [1/1 (X), 001/1 (y)] = 0

Finally, considering variations of the upper limits ofspace and time integra-
tion we get the expressions for the generators of space and time displace-
ments. that is the four-momentum. " ..i '-', ';".'k"~.."' .1"

~n particular the energy is given ;by

o

m21j>t 4>} d3X

o o

{cbtrl> + 'VrI>t (22)'1/1-tH=Po

If we rewrite itwhich is the familiar expression for a Klein-Gorden field.
in terms of the creation and annihilation operatdts 'w6'get

d3k
(uk)} ~.wk)a

, .
This expression, together with the commutations relations (15) for a (:!: wk),

enable us to interpret H as the energy of a collection of positive and negative

energy particles, provided the inVariant vacuum state 1 ° )is defined by

a(wk) IO)=a(-wk)\0)=O. (24)

The quantized field is thus equivalent to a collection of particles with either

sign of the energy.

In dealing with the scalar field we have made use of quantization accord-
ing'to Bose 5,tatistics. Thi~ necessary relation betweertspin 'at1d statistics
is a consequence of ~an it1va.riance requirement on the Action furtctiort called
the S-principle. This matter is discussed in so~e detail in a later section.

INTERACTING FIELDS AND THE PHYSICAL REINTERPRETATION
POSTULATE ;J;";j\.",::-:f..r f.""',;~:';~:III.

As an illustration of the construction of the theory of interacting fields,
let us consider the coupling of a neutral scalar field with another scal.ar
field "' bilinearly. We write' c{;, ' "

Lint = 9 ("'t + "')2 (Cpt 1- Cp).
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..
of motion ~- -~w ifs field :

(02 + M2) "' = g(1/11 + 1/1} (f/>t + f/>}

Since the denominators never vanish, we do not have to specify the Green's
function any further.

To calculate the effective 1/11/1 scattering we solve the equation of motion
of the 4> field to obtain

(02 + m2) (4>t (x) + 4> (x» = 9 (I/1t (x) + 1/1 (X»2 (32)

to obtain the contribution of the source 9 (I/1t + 1/1)2 at the point y to the 4>
field at the point x to be equal to

9 f G (x -y; m) (I/1t (y) + 1/1 (y)2) d4y.

Assuming the mass m of the 4> field to be less than twice the mass M of the
1/1 field there are no processes to first order in the interaction (25). To second
order we have the following processes :

M+m-+M+m

M + M -+ M + M (26)

The first one is elastic scattering of a 4>-quantum by a l/I-quantum. The
.virtual

equation

.."$;;-~"h (27)
k" "',~

so that

1/1 (x) = I/lo (x) + 9 J G (x -y) (4>t (y) + 4> (y) (1/11 (y) + 1/1 (y) d4y

(28)

where G (x -y) is a Green's function satisfying

(02 + W) G (x -y) = 8 (x -y) (29)

and 1/10 (x) is a solution of the homogeneous equation. Hence the effective
interaction leading to 4>1/1 scattering is

-1g2 J J I/It (x) 4>t (x) G (x -y) 1/1 (y) 4> (y) d4xd4y (30)

where the factor -1 has been added to compensate for the double counting.

If we denote the 1/1 and 4> momenta by p and q, the effective transition amplitude
to second order is given by
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Consequently the effective t{1lft interaction is

l/I(y))2d4Xd4y (33)m) (I/If (y)(1/Jt(x) 1/1 (X))2 G (X y;_{!2

If we denote the momenta in the initial state by Pl' P2 and. iI.l th~ :fi~al state by
PI" P2' the scattering amplitude, in the second order approximation, is :

(34)P2')2 -M2}-1.M21 {(PI:g2 ({(PI -1?1
-,

Both the 1/14> (" Compton ") scattering amplitude and the 1/11/1 (" Moller ")
scattering amplitudes have, to the- second order in the coupling 'constant g,
exactly the same expression, as we would have obtained from the standard
~he~ry. It~ would be necessary to note that the present tbeory not only
furnishes the amplitudes for the mutual scattering of positive energy particles
but also of negative energy particles. But in this case we make use of the
physical reinterpretation postulate.9 A negative energy particle in the initial
(firlal) state of a transition is to be identified with a positive energy (anti)
particle with opposite linear (and angular) momentum in the final (initial) state.
We find that the scattering ampl~tudes that we have computed above in the
second-order approximation -do have this feature. we shall henceforth
implicitly assume the reinterpret-ation postulate in discussing transition
amplitude: without loss of any generality we could restrict attention to
positive energy particles insofar as transition amplitudes are concerned..
In a real sense, only positive energy particle.\' are physical.

We have seen that the second-order scattering amplitudes could be
eoiriputed without. specifying the preciEe choice of the Green's function,
since their Fourier transforms never vanished in the physical domain for
the initial and final particles. This is a property of more general class of
pr9~essts reprcsentcd by "tree diagrams". Of course these processes share
w'ith the simpler secoIldorder processes the defect that they do not yield

ut~itaty scattuing amplitudes.

Before proceeding to the systematic computation of the higher order
effects it is desirable to discuss the question of the freedom in the choice of
the Green's function. We have seen that for the equation of motion

(35)t;,(x)( 02 + m2) 4> (X)

the general solution is
(36)G (x -y) g(y) d4y<I> (x) = <Po (x)
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where "'0 (x) is any solution of the homogeneous equation and G(x- y)
is any Green's function. For the same Heisenberg field"' (x) and the same
equation of motion, the change in the Green's function entails a change in
the " free field " "'0 (x). The change from a (x- y) to 01 (x- y) without

change of"' (x) implies that "'0 (x) be replaced by "'0 (x) + f {a (x -y)
-01 (x -y)} ~ (y) d4y. In particular, the change from the half retarded-
half advanced Green's functions

1 p f eik<x-1/)
(2";T)4 /(2 -m2 d4k~ (x y)

to the causal Green's function

1 f eik(X-1/> = d4k
y) {2;i54 k2 -mm;;~c(x

is equivalent to the augmenting of the free field by the terms

~ f 6 (l)'(X -y) (y) d4y

where 6 (1) is the symmetric invariant function

Conversely, the change in the Green's function is entailed by a change in the

asymptotic field.

SECOND QUANTIZATION OF THE DIRAC FIELDIV.

The free Dirac field obeys the equation

M) 1/1 (x) = 0.
(iyIJ.()jJ.

Tpis equation can be solved to obtain plane wave solutions of the form

~t.-
1/1 (x) = u ,.(x)e

where the four-momentum k satisfies

ko = :I: VM2 + k2 :!:{I)

and Ur (k) satisfies the equations

(')1P.ku -M} Ur (k) 0.
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The two values of r are related to the two possible values of the helicity:

a. kur (k) = ( -)r-1 t k I ur (k). (44)

For the same value of the spatial momentum k there are four solutions,
two solutions with positive energy and two with negative energy.

According to our general principle we define for each value of the
spatial momentum four annihilation operators, two for positive energy and
two for negative energy. We write, accordingly, for the second quantized
Dirac field

~

~~!",Tc"':;t\~-

(45)
l~~l~

,
t ":? "

:"'~

~j ,;;:i,
Wl, ~;

(46)

~

The creation and destruction operators are chosen to satisfy the antic9m-

mutation relations

{a,.(:1= wk), ast (:I= w'k')} = 2w8 (k -k) 8,.s

{a,. ( + wk), as (:I= w'k')} = {a,. (wk), ast ( -w'k')}

= 0- (47)

fa~
/

(4R)

~~ - -

It then follows that

3 (x;O -yO) {1/1 (x), I/1t (y)} = S (x -y)

.3 (XO -yO) {1/1 (x), 1/1 (y)} = 0 (49)

provided we normalize the solutions uT (:f:wk) by

uTt (:f:wk) Ur (:f:wk) = 2w. 11'1

_2~

(50)

In writing down the second step of C 48) we have made use of the completeness
of the four solutions uT C:1:wk) for a fixed value of the spatial momentum
k. Note the fact that the anticornrnutators of the annihilation and creation

' k d3k
+ a

( -w -k ) UT (-w -k) e~ X } --
T 2v'~~

with the conj. gate field



L44 E. C. G. SUDARSHAN

The two values of r are related to the two possible values of the he.Iicity:

a. kur(k) = (_)r-1 jk I u,(k). (44)

For the same value of the spatial momentum k there are four solutions,
two solutions with positive energy and two with negative energy.

According to our general principle we define for each value of the
spatial momentum four annihilation operators, two for positive energy and
two for negative energy. We write, accordingly, for the second quantized
Dirac field

I/; (x) = f {aT (wk) UT (W k) e-ikx ~i~;!:;'.j

+ Or (-W -k) UT (-W -k) eikX} --~
2 vt~~

with the conj. gate field

(45)

~j L'

,.i

yc'.~~;;~

ti

"
~1~ ~

(46)

~

The creation and destruction operators are chosen to satisfy the antic\:>m-

mutation relations

{or (:I:: wk), ost (:1: w'k')} = 2w8 (k -k) 8rs

{or ( + wk), Os (:I:: w'k')}= {or (wk), ost ( -w'k')}

= 0. (47)

t..

(48)

(49)

~

;~
~..1

It then follows that

3 (XO -yO) {tIs (x), tlst (y)} == S (x -y)

.3 (XO -yO) {tIs (x), tIs (y)} = 0

provided we normalize the solutions tiT (:::f:wk) by --

uTt (:::f:wk) ur(:::f:wk) = 2w. (50)

In writing down the second step of (48) we have made use of the completeness
of the four solutions uT (=1: wk) for a fixed value of the spatial momentum
k. Note the fact that the anticommutators of the annihilation and creation
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operators are positive for both positive and negative" energy" states.." This
is to be contrasted with the commutators of the annihilation and creation
operators for the spin 0 field which change sign with the sign of the energy.
This difference is to be traced to the difference in the nature of the scalar
product: for the spin 0 case the scalar product changed sign with the sign
of the energy, while the spin t scalar product (50) does not change sign with
the sign of the energy.

The general anticommutation relations can also be written down from
the basic anticommutation relations for the annihilation and creation opera-
tors. We get

{1/1 (x), 1/1 (y)} 0

{1/1 (x), I/It (y)}

eik(x-y) u.. ( (U k) ut (.

But

1: UT ( wk) Ur t ( wk) = yO (y k + M). kQ + vk'+ Ma

.k) urt ( w-k) = yO (yEur(' k-M).

Hence

fIjI (x), I]; (y)} ( iyp- ~~I' + M i6 (x- y)

S(x y) (51)

where Li (x -y) is the invariant commutator function for the scalar field.

The function S (x -y) has the properties

8 ( .\:0 VO) s (x 3 (xv) v)

S(y + S(xx) y)

3
( iy# ~ (52)
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The fundamental equal-time anticommutation relation~ as well as the
equations of motion can be deduced from the Action Principle starting with

the Lagrangian density

M;[1,p

considering anticommuting variations.and

The general. equation of motion for the Dirac field Is of the form

()

(i~~

M 1/1 (x) = '1} (x)

the general solution

1/1 (x) = l/Jo(x) + f II (x -y) '1] Cy) d4y (53)

where G (>. --y) is any Green's function satisfying the inhomogeneous

equation

(54)"{)

( iyl' ~ii.
s (x).

For the same field ~ (x), if we change the Green's function D(x -y)we must
change the free field ~o (x). The two special choices for D (x -y) are the

half retarded-half advaI1;Ced .Gr,een's function

(55)y)jj(x

the causal Green's function

(56)"qc(x- y)

The change from j} to j}c for the same Heisehberg field I/s (x) can be generated

by a change in the free field from I/so (x) to

i
I/so (x) + 2 J 8(1) (x -y) 7] (y) d4y

where

(57}
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The freedom iIi the choice of the free field t/io (."\7) is thus equivaJent to the
freedom in the choice of the 'Green's function. : ;:

With the formalism as developed so far we can compute the Jowe~t

order (second order) predictions of the Yukawa interaction
,.' ,

Lint = glJ'tr°lJ'<P (58)

for Fermion-Fermion and Boson-Fermion scattering. Here 1JI is the self-
conjugate fermion field containing both creation and annihilation parts

IJ'T (x) = I/IT (x) + BTSI/Ist (x)

c; , ,
where B is a matrix so chosen that BrsI/Js t transforms under Lorentz trans-

formations like I/Jr' This Il1atrix is dependent on the representation chosen
for the Dirac matrices; in the Majorana representation it is the unit matrix.
More generally it is defined by

B (aIJ.V)* B-l = -(Jl"JI

B (yU)* B-l -yIL

The second of these conditions, of course, implies the first one. There are
no essential difference in this calculation from the corresponding calculation
that we carried out in the last section for boson-boson scattering a~d we

shall not reproduce the calculation here.

THE CONNECTION BETWEEN SPIN AND STATISTICS

We would like to discuss the Action Principle and the relation between
spin and statistics.1° To provide for a uniform treatment we shall arrange
to have the equations of motion to be of the first order so that the Lagrangram
are linear in the " velocities". We denote the field variables by 4>r (x) where

r Tuns over the many components of the field 4> and write the Lagrangian

density in the form

'()..<1>1't<1>s1! (rP')rs {4>rt(),,4>s H(x)L(x)

where H (x) contains no dependence on the gradients of the field components.
In particular it includes the bilinear mass terms. The matrices rIJ. are :0
chosen that the Lagrangian density is invariant under Lorentz transform[-
tions. This Lagrangian density h~s~h~ s}lQrtc9mipe th~~ i~ treat~ 4> and 4>t

in an unsymlUetric fas~ioq!
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Since t/I furnishes a ;epresentation of the complete Lorentz group (whieh
is in general reducible and not necessarily unitary) ~t also furnishes a repre.
sentation of the Lorentz group. For any collection of finite dimensional
representations, ~t is equivalent to the representation furnished by ~.
We shall consider finite dimensional representations only here. If the
representation furnished by ~ is denoted by D ( I\ ) t

~T (x) DTs (I\ ) ~8 (I\ -IX) (61)

then the representation by ~t is of the form

~Tt (x) Drs* (I\ ) <l>st (I\ -IX).

The said equivalence implies

ErltDns ( A ) = Drn. ( A ) E"s'

If we therefore write

~

(62)
.

fM;i;!

I/Ir = (E-l)rs4>s t

~

11

then 1/1 transforms like 4> and we may rewrite the above Lagrangian density

in the form

L (x) = t (ErIL)rs (I/Ir ."()~4>" -"()~l/Ir .4>,,) -H (x).

In this form we can implement a suitable symmetrization of L under the

interchange of the creation and annihilation operators that is of the fields
4>, 1/1. We shall require that the L:tgrangian density and, hence, the Action be
invariant under the replacementlO

4> (x) -+ 1/1 ( -x)

1/1 (x)-+ cf>(- x). (63)

We shall refer to this requirement as the S-principle. The above Lagrangian

density does not satisfy this property. We can, however, symmetrize it so
as to satisfy the S-principle, to obtain :

L (x) = t (ErIL)rs {l/Ir"()#4>s -"()ul/1rcf>s -cf>r"()#4>" + "()jJ.cf>rl/Is} -H (x).

(64)

Henceforth we shall consider (64) as the Lagrangian ~ensity from which the

A9tigp f\lP9tign WO\lIQ p~ <;:<?p~tr;\l9te9!
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The Action Princip.le now states that an variations in the d~amical
variab.les are generated by the. changes jn the Action :

A -1.- L (x) d4X

so that

iS4>r (x) -[4>r (x), SA]
iSI/Ir (x) = [l/Ir (x), SA] (65)

We shall consider two possibilities fOI the field variations: either that they
shall commute with all the field variables or that they shall anticommute
with all field variables. The first possibility leads to commutation relations
and the second to anticommutation relations. The Lagrangian density
(64) may be rewritten in the form

L (x) = 1 (ErJt)ra {l/Ir()/£4>s -()Jt1/lr4>s}I>

+ 1 (ErIJ.)sr {()I14>sl/lr -4>S~I'I/IT} -H (x).

Considering variations which vanish at end points we get the equations of
motion. By considering end point variations alone we get, according to

(65),

iSc/>r (x) = 1 (Ero)ns f [<f>r (x), I/In (y) Sc/>s (y)] S (xU -yO) d4},

+ -! (ErO)sn f [c/>r (x), Sc/>s (y) I/In (y)] S (XO -yO) d4y

iSI/Ir (x) = -1 (Ero)ns f [l/Ir (x), Sl/lr (y) 4>" (y)] S (x8 -yO) dfy

-1 (Ero)sn f [lJir (x), c/>s (y) SI/I" (y)] S (XO ,.- yo) d4y.

(66)

For variations commuting with the field variables we get from either of the
above relations :

lS (XO -yO) {(Ero)ns + (Ero)sn} [4>r (x), I/In (y)] = SrsS (x- y). (67)

If on the other hand we had considered variations which anticommuted with
the fields we would instead get the anticommutation relations

!8 (xD -yO) {(Ero)ns -(Ero)sn} {<Pr (x), I/In (y)} = 8ra8 (x- y). (68)

The relations (67) would become inconsistent if Era is antisymmetric; and
(68) would beco~e 1nconsistent tf ~.ro is s~etric. ~epc~ t~Q ~ommutin$
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field should have Ero symmetric; and could then be subjected to Bose
statistics. Whi.le the anticpmmuting field should have Ero antisymmetric.

The symmetry of the matrix Ero is now to be studied. The'transforma-
ti on of " strong reflection '.' in which the space time co-ordinates one all

reversed is a proper Lorentz transformation and can be thought of as a
rotation through 1T around any space axis and a complex pure Lorentz trans-
formation equivalent to a "rotation" through i71'. Hence the transformation
of a Dirac f~eld is of the form .

1/1 (x)~ iy61/l (- x). {69)

On the other hand, the matrix rp. is given by yOyP. so that

Erp. = iy°yP-y5

which is anti symmetric (independent of the representation of the Dirac
matrices). It follows that a Dirac field ought to be quantized according to

Fermi statistics. Fora Klein-Gorden field the matrix is again simply given
because it leaves scalars (and second rank tensors unchanged but changes
the sign of vectors. On the other hand the matrix connects the scalar with
the vector and is antisymmetric. Hence Erp. connects scalars with vectors
and is symmetric, so that a spin O field should obey Bose statistics.

More generally, since all finite dimensional representations of the
Lorentz group can be obtained as totally symmetric multispinors it is possible
to show that Erp. is symmetric for tensor representations and antisymmetric
for spinor representations. Hence the basic commutation relations (67)
and (68) assert that tensor fields should be quantized according to Bose
statistics and spinor fields according to Fermion statistics. This is the funda -

mental theorem on the relation between spin and statistics.1° As deduced
here it is purely a consequence of the Action Principle, and the S-principle.

Since no reference was made to the sign of the energy density or the
charge density these considerations apply equally well to our formulation
of quantization or to the more conventional method quantization.

VI. REDUCTION OF THE S-MATRIX

To be able to treat the interaction to higher approximations it is necessary
to de~elop a systematic perturbation theory and to provide a scheme for the
reduction of the S-matrix. A heuristic method of developing this is to
proceed tp the interaction picture and cQP~i(ler t\le expression for the S-matrix:

S -T (exp. f J W (x) d4X} (11)
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wpere W {x) is the interaction in the interaction picture. If we rewrite this
expression in a normal ordered fashion the coefficients of the various terms
are the {unrenormalized) expressions for the S.matrix elements for the
various processes. This reduction is facilitated by the use of Wick's theorem
and the use of the contraction functions. But before doing that we recall
that there is still some freedom in the definition of the asymptotic " in'-'

fields in terms of which the particles are introduced into the field theory .
We make the choice"

y) 9 (Y),d4yI/>in (X) = 1/>0 (X)

where 1/>0 and 1/10 are (the annihilation part of) the Boson and Fermion fieldsand 9 (y), 7] (y) the sources of the Heisenberg fields. !

( O 2 + m2) 4> (X) = , (X)

(iyIJ.()IJ. -M) 1/1 (x) = 11 (x).

This choice of the asymptotic field is equivalent to an apparent change of
the interaction. For example, for the Yukawa interaction

Lint (x) = g'1't (x) y°'1' (x) <1> (x)

~ (x) = g'1't (x) yO '1' (x)

7} (x) = g<I> (x) '1' (x)

we get the effective interaction

w 1 (X) = g1Jlt (X) yO1Jl (X) <1> (X)

+ ~ 1JIt (X) yO1Jl (X) f 6 (11 (X

4
y) 1J't Cy) y°tP Cy) d4y

y) 1J'(y) ([) (y) d4y.

Let us now compute the contraction functions. Tbe :!3os9n lieI4~ --ju
tpe interaction (25) occurs only in th~ combinatio~

1> (x) -4>t (x) + 4> (x)
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Then

f(/) (x), (/) (y)l t<1>t Cx), <I> Cy)]+

;;;0 '6 (x

[ <p (x}, <pf (jI}J

y).

the contraction function

'To(x,y) :;;;; (OIT(~(x)~(y» 10)

i
= 2 E (xD yO) 6 (x

v)

(74)i f eik(:x:-3/) ('IiT')4 p k2 -mi d4k

coincides with the half retarded-half advanced Green's function. In contrast,
in the standard formalism the contraction function is equal to the causal
Green's function. Similarly for the Fermion field we have the contraction

function

an (X, v) = { 01 T (1J1(x) 1J1(y)) 10

(75)= iE (x6 -yO) S (x -y)

which is again the time symmetric Green's function.

We have already seen that the freedom in the choice of the asymptotic
field, entails a freedom in the choice of the Green's function. In parti-
cular the choice of the asymptotic fields 4>in, l/Ji~ according 10 (72) yields

effective contraction functions

T (X, y) = TO (X, y) + ~ 8 (1) (X y) = c (x -y)

Sc (x (76)0" (x. v) y)O"o (x, y: v

and the effective interaction

W (x) = g'l't (x) y°'l' (x) rp (x). (77)

This may be verified by direct cal~ulation for the second and fourth order
matrix elements. A combinatorial argument can be constructed to show
the validity of this effective contraction functio~s to all orders in pertur-

bation theory.
We have thus recovered, in the present theory, the (unrenormalized)

~~pansion of t4e s9attering ampti~u4e as a power series in the coupling
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constant.l1, 12 The result so obtained contains all the familiar infinities of

perturbation theory and is therefore without precise mathematical content.
But the heuristic method of renormalization of the perturbation expansion
developed within the standard formalism can be transplanted into the present
formalism to provide a renormalized perturbation expansion in which each
term is finite.

The renormalized perturbation series yields an amplitude which is unitary
to the order of approximation desired. But the essential point is that the
unitarity relation is true when only the positive energy particles are included
in the intermediate states. This remarkable result is consistent with oU'.
assertion that only positive energy particles are physical.

VII. DISCRETE TRANSFORMATIONS AND THE TCP THEOREM

The formulation of quantum field theory given above is invariant under
relativistic transformations belonging to the proper orthochronous group.
We now wish to consider the discrete transformations of space inversion (P),
time inversion (T) and charge conjugation (C) and the invariance of the
theory under such transformation~ .

Space inversion.-The space inversion transformation should be viewed
as a purely geometric transformation in which momenta and co-ordinates
change sign but energies and angular momenta remain the same. For the
scalar field creation operators this implies

a (w, k) -..a (w, -k)

a ( -w, k) -..a ( -w, -k)

independent of whether the corresponding particles are self-conjugate or
not. This implies, for the scalar field

cp (x, t) -..cp (-x, t).

For a pseudoscalar field there is an additional phase factor of -I. To
include thjs also, we may write this 'more generally in the form

cp (x, t) -..'I1p cp ( -x, t). 'I1p = :1: 1. (78)

In the case of a vector field there is the additional geometric feature dis-
tinguishing the space and time components {)f the four-vector.

Ao (x, t) o..+'11p A ° ( -x, t)

A (x, t) -..~'IJt) A (-x, t) (79)
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Finally for a spinor

1/1 (x, I) -1JpYOI/1 ( -x, I). (80)

To complete the definition we must exhibit a unitary operator U (P) which
implements these transformations on the field operators and leaves the

vacuum unchanged so that

u (P) I 0) = I 0)

u (P) <I> (x, t) U-l (P) '1}p 4> x. t). etc.

A formal construction of such an operator U (P) can be carried out easily
we note, for example, that the operator

17p at (wk) k)} {a (wk) -1]p a(w, -k)}Ut

wk) -7Jp at (-{at (. £!,J~k)} {a (-wk) w-k)})7Jp a

k)

has the property

UlQ (:1: (JJ, k) Ul-l

Ul10} = I 0}.

= 'l7p a (:!:wo

A product.. of such factors would serve to definC U (P). Since the behaviour
of the fields und(;r space inversion are the same as in the standard formula-
tion, we shall not enter into a detailed discussion of the space inversion
invariance of various interactions.

Particle conjugation.- The operation of charge conjugation implies
the .replacement. of particle creation (annihilation) operators by antiparticle
creation (annihilation) operators. When the particles are self-conjugate
(i.e., the antiparticles are the same as the particles) the charge conjugation
transformation reduces to a real phase factor ?Jc = :1: I. For a general

field we have

(1, (":1= (J), k) ~b.,. (::\: (J), k)

fo~'the non-self conjugate case; and

QT.(:i: wjk)~'1}cQr(:i: W, k)

or the self-conjugate case. No loss of generality is eniailed by not including
a fJhase factor in the non-self conjugate case.. We should now construct a
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unitary charge conjugatjon operator U (C) which would implement
transformations unitarily and leave the vacuum invariant :

U (C) ar (:!: w, k) U-l (C) = b1' (:!:w, k)

U (C) I o } = 10 }.

Here again the transformations have the same structure as in the standard
formula.tion. \

It is worthwhile to point out the elementary fact that any given non-self-
conjugate field can be expressed as a definite linear combination of self-
conjugate fields with opposite charge conjugation phases. We write

at (~ (JJ, k) =:;::

(J), k)

1
l-v2 {a ( (I) k) b (::i: w, k)}.a2 (

Then

u (C) QlU-l (C) = + QJ

u (C) aSU-I (C) = 42

illustrating the statement.

In terms of the self-conjugate fields we may write

U{C) l/J.(x, t) U-l (C) 1Jc!/J (x, t)

for boson fields and fermion fields alike.
tious fields

We couJd construct non-Hermi-

1
~ (X) = -{~(1) (X) + i~(2) (X)}

V2

(84)

which would transform according to

u (C) ~ (x) U-l (C) = "' (X)

U (C) "' {X) U,..l {C}= $ {X).
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So far the fields 1/>,1/1 contain only annihilation operators. Their Hermitian
adjoints which contain the creation parts transform according to

U ',C) I/>t (x) U-l (C) = I/It (x)

U (C) I/It (x) U-l (C) = I/>t (x)

..-~

q,t (x) = -.!- (q,(l)t (X) -iq,(2)t (X»
1,'\1:2

tkt (x) = ~ (q,(l)t (X) + iq,(2)t (X».

'
For a Boson field, the crossing symmetric combination which enters the

interactions is

<P (x) = tkt (x) + q, (x)

with

while for the Dirac field it is

tPr (x) = <f>r (x) + Brsl/ls t (x).
,

These are the generalizations to non-self conjugate fields of the se1f-conju-
gate expressions used in (59) previously. Now

tP (x) = tPll) (x) + itPl2) (x)

tPr (x) = tPrll) (x) + itPrl2) (x) (86)

where all the fields which appear on the right-hand side are se1f-conjugate

fields. The charge conjugation transfofIl}ation yields

UtP (x) U-l = tpt (x)

U<I>r (x) U-l = BrB <I>st (x)

Utpln) (x) U-l = ( -)n-l <I>ln) (x) (87)

Qsing these expressions we may study the invariance of interactions involving
conjugate or non-se1f-conjugate fields under charge conjugation. As an
example, the interaction (25) that we have considered in an earlier section
is charge conjugation invariant provided <f>{x) is even under charge conjuga-

tion.
Time inver sion.- The discrete transformations like time inversion (T)

and strong reflection (TCP) are treated as antilinear transformations in the
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standard formulations of quantum field theory. The reason for this is that
if these transformations are treated purely geometrically two difficulties are
encountered. The first one is that under a geometric transformation
involving time inversion the energies, being fourth components of the energy-
momentum four-vectors, should change sign while the momentum would
not. However, the notion of viewing the time evolution of a physical system
in reverse would lead us to expect the momenta to reverse while the energies
retain their sign. The second difficulty is that for finite-component Boson
fields the canonical commutation relations change sign under such a geo-
metric transformation. To avoid these difficulties time reversal transforma~
tion is defined as an antiunitary transformation in the standard formula-
tion of quantum field theory. The transformation has the property of inter-
changing initial and final states, reversing all momenta, but preserving all
helicities and energies and interchanging " in " and " out " states. In parti-

cular, on a single particle state the behaviour of the time reversal trans-
formation has the action

k). (88)at (w, k) 10 } ~ ( o I a (w,

No generality is lost in not including a phase factor .

In the present formalism none of these difficulties are encountered. The
energy spectrum contains both positive and negative energies and the geo-
metric transformations do not introduce any contradiction with the energy
spectrum. In view of the nature of the commutation relations

fa(:l: w, k), at (:1:: wt, kt)] = 2w8 (k k')

which chan.R;e sign with the sign of the energy, the geometric transformation

q, {x, t) ~ q, {x, -t)

for the Boson field preserves the commutation relations. As long as we
deal with self-conjugate fields it appears that the geometric transformations .

I/> (,\", t) -T/I/> (x, 1)

x; I) -+ i7)yOY!. 1/1 (x, -f)

1]Ao (x, -AO(x,1)-'1- 0

A (x. t) -.1)A (x.

or something fairly close to it can be defined to represent tj~ inversion.
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Closer study shows that the transformation so defined with 'I] = :1:: 1

are applicable tp self-conjugate fields which are even and odd under charge
conjugation. In other words, the transformation that we have defined is

not T but TC. This can be seen by considering the transformation (89)
for a non-self-conjugate field, say the scalar field as transcribed in terms of

the annihilation and creation operators :

a (:1:: w, k) ~ a (=I= b), k)

a t (:1:: w, k) ~at (=F w, k). (91 )

Hence the tr&1sformation of the one particle state is according to :

at(w,k) IO)~at(-w,k)IO).

ill other words a positive energy particle in the (initial) state is transformed
into a negative energy particle in the (initial) state. By the physical reinter-
pretation postulate this is equivalent to a positive energy antiparticle in the
final state. In other words the net result is as if the transformation is :

( ;",
at(b)k)IO)~(Olb(w,-k). (92)

Comparing this with the behaviour (88) of the time reversal transformation
in the standard formulation we see that the transformation is really TC and
not T. Since C has already been defined, if we so choose, we can define T

by considering

T = (TC) .C. (93)

The time reversal transformation so defined is unitary in contrast to the
antiunitary nature of the transformations in the standard formulation of

field theory .

We note that while a time reversal transformation T can be defined by
(93), it is the TC transformation rather than T that has a simple geometric
behaviour. For self-conjugate fields the two differ bya real phase factor.

.This is relevant in view of the geometric nature of TCP transformati~n and

the TCP theorem.13

Strong reflection and the TCP theorem.-Let us now consider the geo-

metric operation

<I>(x) ~<1>(- x)

l/I(x) ~il'51{i(- x)
A!' (x) -+ -All. ( -x) ;; .(94)
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which corresponds to reflection of all the space time axes. I.t could be seen

to be an element of the complex Lorentz group. Any theory involving finite
component fields which is manifestly invariant under the real Lorentz group
is also invariant under the complex Lorentz group}3 Under such a trans-
formation any manifestly covariant local Lagrangian density tran,sforms
according to

L(x)~L{- x). (95)

Hence the Action function is unchanged. Thie is the TCP Theorem in our

formulation of quantum field theory.

To see the physical implications of this geometric transformation we

study the special case of the scalar field

-!J 4> (x) ~ 4> ( -x). (96)

We shall take this field to be non-self-conjugate. Then transcribed in terms
of annihilation operators we get

a (w, k) ~ a ( -w, -k) (97)

so that the one-particle states transform according to

at(w, k) 10 )~at(- w, -k) 10). (98)

By the physical interpretation postulate we get the negative energy particle
(in the initial state) is to be identified with a positive energy antiparticle with
opposite momentum (in the final state). The net result is then as if we
defined the transformation as

at{w, k) 10 ) -+ ( o I b (w, k) (99)

which is the conventional TCP operation.

Just as in the case of the time reversal operation, the TCP operation is
represented by a unitary operator within the present version of quantum
field theory .

vm. CONCLUDING REMARKS

In the preceding sections we have presented a reformulation of quantum
theory of fields which has several simplifying features as compared with the
standard formulation. The basic idea is to use Fock's method of associat-
ing the entire field with the wave functions of one-partiele states with both
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positive and negative energy states. The conjugate field is now afield
containing only creation operators with both positive and negative energy
states. The theoretical framework so obtained is in accordance with cano-
nical commutation relations and the Action principle.

,
The negative energy particles that are described by the field demand

a physical interpretation as positive energy antiparticles travelling in the
opposite direction. This interpretation is suggested' by the study of the
physics of classical negative energy particles. The physical reinterpretation
postulate is of fundamental importance in the present version of quantum
field theory.

The present theory can represent time inversion and TCP as linear
( unitary) operators. The physical implications of the invariance under
the various discrete transformations as far the transition amplitudes are con-
cerned is the same as in the usual formulation.

It may be a small advantage, but the present formulism can also be
employed for the quantum field theory of faster-than-light particles.

By studying a simple Yukawa interaction we have endeavo\Jred to show
how a covariant perturbation theory can be constructed. The perturbation
expansion so obtained contains divergent quantities and has to be renorma~
lized, or regularized using an indefinite metric to obtain finite and meaningful

answers.14

The usual relation between spin and statistics can be derived in this ver-

sion of quantum theory of fields..

Because of the negative energies occurring in this theory the spectral
postulate of axiomatic field theory15 is violated. As a consequence the
standard results of axiomatic field theory no longer hold. As an example
we see that local fields annihilating the vacuum can be constructed. Despite
this the essential result of TCP invariance can be deduced within the present
framework. The theory has local fields satisfying local commutation

relations.

The point of view that only the positive energy particles need be con.
sidered physical receives mathematical confirmation from the unitarity rela~
ti on satisfied by the perturbation theory. scattering amplitude. In the unitarity
sum-over-intermediate-states only those states containing exclusively positive
energy states need be included,
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Since the perturbation theory amplitude in the present theory is identical
with that of the usual theory, dispersion relations of the usual kind are
satisfied by the scattering amplitude. In other words while the Wightman
functions in the present theory do not have the " future-tube " analyticity ,16

the scattering amplitudes may be expected to have the usual analytic

properties.
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