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ABSTRACT

The quantumn theory of partial coherence is systematically developad. It is shown that the
analytic coherence functions are completely determined by their boundary values for equal times; this
result is valid both in classical theory and in quantum theory of coherence and for a!l coherence functions.
The propertics of reduced coherence functions of second order are used to decompose an arbitrary second
order coherence function as 2 sum of coherence functions with unimodular reduced coherence functions.
All resulis of the classical theory of second order partial coherence are recovered in thé quantum theory
formulation.

The higher order cohercnce functions and their relation to intensity correlatious are discussed
and the question of measurement of the coherence functions in terms of intensity correlation measurements
is considered. The coherence indices of arbitrary order are defined as suitable normalized cohierence
functioes, The coherence indices so defined are in general complex and of absolute value less than unity ;
the special case of unimodular coherence indices is studied in detail. Itis found that the necessary and
sufficient condition for the coherence index to be unimodular is that the corresponding coherence functions
factorize. When the coherence functions of order (#, ») factorize so do all other coherence functions of
higher order ; more precisely, if the coherence function of order (' »') factorizes of either g or ¥' is
larger than both # and ». Hence, except for a few lower order functions’ possibly, all the coherence
functions factorize : the general density matrix compatible with this behaviour is obtained., Essentially
all the excitation is in a single mode ; the limiting case of * mode-pure ™ fields with excitation in only one
mode is studied in detail, Several inequalities that have to be satisfied by the higher order ** moments™’
defining a mode-pure fields are presented.

The method of higher order coherence functions is not adequate to describe all statistical wave
fields; the higher order coherence functions may diverge. The proper treatment is in terms of the
characteristic functional ; this theory is developed in detail. The fundamental role played by the diagonal
represcrtation of the density operator is clearly brought out. Tt is shown that given the characteristic
functional we can reconstruct the density matrix; the higher order coherence functions, when they exisz
can be obtained by a power series expansion of the characteristic functional.

An intermediate class of fields of illumination which include the mode-pu-e fields but less
gzneral than the general statistical field are considered and they are shown to be characterized by an
auxiliary two-point function,

¢ Supported in pirt by the U. S, Atomic Energy Commiission.
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1. INTRODUCTION

The concept of partial coherence

The wave properties of light beams are well known. We know, for example,
that light undergoes diffraction and can be made to undergo interference with other light
beams. It obeys the general property of superposition. The predictions of tha ciementary
theory of, say, double slit interfercnce pattern or Fresnel diffraction furnish a quantitative
interpretation of the observed pattern. Yet we know that the elementary theory cannot be
a complete account of the phenomena involving lighi bezams since it has no concept of
partial coherence. We know that we do not obtain the familiar double slit interference
pattern of equally spaced fringes with two arbitrary light sources but only with two
secondary sources derived from the same sourcz usually by using two slits in a screen
kept at a sufficient distance from a uarrow primary slit. We know from diract experimeantal
evidence that the contrast between the intensity maxima and minima (the “visibility )
becomes poorer as the distance of the primary source from the double slit is decreased.
In this case we have a gradual transition from the fully coherent case (to which the
elementary theory applies) through various stages of partial coherznce to the case of
complete incohercace.  For a complete treatment of the problem, it is therefore necessary
to discuss both the concept of partial coherence and the law of propagation of partial
coherence. The questions have been systematically studied during the past few years
within' the framework of classical optics, The results of these investigutions are of
fundamental importance and are now classical [1] (in more than one sense!). One considers
the light amplitudes V' { p, 1), ¥V (p,, 1,) at the points 2, and p, at times ¢, and t, 1o be
stochastic variables. The intensity of Jight at these two points are given by

(1.0 U(p, )= <V*(p, ;) V(ps t;)>
which is non-negative in all cases. The more general bilinear quantities
(1.2) T (piti pe ) = <V* (pi ) V(pe t)>

are the (second order) coherence functions. For pj= po, t = # it reduces to the

intensity function. One can also introduce the normalized degree of coherence

T (p;t, pe &)
% - .r., r - - e ———
Vi) : V (Bt ReTe) .\/f (piti i 1) T (px 1, pu 1)

which becomes unity when p; = px, f; = #.. This quantity has a direct phvsical inter-
pretation asa “visibility index”” : consider an opaque screcn passing through the points
p, and p, with pinholes at these two points. The two pinholes are not to be of equal

size but the ratio of their sizes may be varich, they are however to b2 small enough so

1 This differs somewhat from the standard discussion of the relation between visibility and the
reduced coherence function.
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that the variation of the mutual coherence function T as the points p, and p, are replaced
by any other pair of poinis included in the area of the two pinholes respectively is
negligible. We shall also assume that we have provision for shifting the phase of the light
amplitude at either pinhole by any desired amount. his would of course involve ideal
(nondispersive) phase plates. If we now superpose the light emerging from the two
pinholes after their phases are shifted, the resulting amplitude is the stochastic variable

Vi=a,e 't Vipy ) +ae o Vipyt)

_where the real coefficients a, and a, depend on the sizes of the pinholes (and are to a good
"approximation proportional to their sizes). The intensity is now given by

IM=F* O Vvey=a’I(pt)+aI(p,t)

+ 2a,a, Re { F(p.t,pt)e T al)}
By choosing

a, fipt)
6, — 0, = arg r (psts 2 I)
we get

IO =1aal,/I(p0 (01 =1y

so that the ratio of the range of intensities by the average intensities gi\.!e:s-r

Ima\(—fm[n,_
(1.4) visibility = AT Sk e
Thus the normalized degree of coherence is a measure of the optimum visibility of the
field with the ratio of the transmission factors and the difference in the phases at the two
slits at our command. If we keep the ratio a,/a, different from the optimum ratio the
visibility decreases. For the general case, as the phase difference 9, — 6, i increased
monotonically the intensity associated with the superposed amplitude undergoes a periodic

variation.

In practice ideal phase shifters (‘‘ phase plates ) are not available ; with light of
relatively nurrow variation in frequency it is often possible to choose a material such that
the optical refractive index varies inversely as the frequency over the range of frequencies
for which the light amplitude is appreciable. 1If the frequencies cover only a very narrow
ranpe  (the * quasimonochromatic”™ case) we can approximate the phase shifter by
propagation through free space. In this case we have the familiar optical arrangement of
the double slit interference pattern. Even if the intensities at points 2, and P, are not
equal, by arranging the ratio of the sizes of the pinholes we can realize the maximum
contrast.

T 8¢ foot note on page 122.
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The law of propagation of the cokerence functions

. .. So far we have not specified the medium in which the light is propagating. If
the medium is free space (or any passive linear medium) the propagation law is also linear ;
if the medium is non-linear so would the equations of motion be. The most important
case is the propagation in free space; in this case the equations cf motion for the wave
disturbance is linear and homogeneous. It follows that since the ensemble averaging
implicit in the definition of the coherence functicn commutes with space and time
differentiation of the stochastic variatles of the light amplitude, the coherence fuactions
obey the ‘“same” equations of motion as the wave amplitude, This is true whether we
use a scalar amplitude or a solencidal vector amplitude. The situation here is simpler
than the.case of correlation functions in hydrodynamic turbulence [2]. In the case of
the correlaiion functions of turbulence the inertia term in the equations of motion of the
fluid introduces a fundamental non-linearity which couples the correlation functions of
different orders, In contrast, the equations of motion for the light amiplitude relates the
second order coherence function to itself.

The equations of motion for the light amplitudez

(1.5 (w— g;)zx=o

is of sccond degree in the time derivative. Hence given the equal time coherence function

and the derivative of the time-dependent coherence function evaluated for equal times -
( after the differentiation!) we can compute the time dependent coherence function for

uncqual times. The most important case is that for statiopary states for which

we have

(1.6) I (p, tpty) = r (pot, — 1. Py 0=T (£, T, T)
In this case we can restrict attention to the wave equation

(1.7) 6':-‘ T TeT) = 80 @ur,T) =98 T (£, 5:T)

where v7,*and V,* are the Laplacians with respect to the space coordinates r,, r, of the
points P, and P,. We could rewrite this in the form

rwi (0 11T
I

0 e ler = ler
Leéer J Lv* 0J Lor
r rr ‘]
which gives a linear equation for the two-component * vector™ ar f . Hence if these
L o7 )

quantities are specified at T = 0, the equations of motion determine it for all times
For a solenoidal vector amplitude the equations of motion are slightly moere complicated
but it is well-known that the Maxwell equations can be cast in the form
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(1.9) /: (B 2iB)= = T X (E: iB)

A

.

so that the coherence func*i~n3 obtained by considering E = i B obey first order equations,
but if we write it in terms " & or B we still have second order wave equations.

Analytic coherence functions
pls

Instead of workirz with the real amplitudes, if we choose to work with the

positive frequency part of 1%+ amplitude, the so-called analytic signal [4], then the second
order equations of motion r<<uce to first order equations. For the scalar case we have

i . 0 — _ 3
(1.10) ;51__r—+,/ v: T

where — ? is an intzzrul operator which has the form

~

a1 /= vi T =@m [ Pgiatexp iq-m)x
J da r1l exp [ — i q- rlf:' F (rlrl rs: T)-

Hence it follows that given the equal time coherence function a: all points, we can compute
the unequal time coherence function also. This result has the simple physical interpretation
that the frequency spectrum and the wave-number spectrum of natural light are essentially
the same. The complications introduced by considering the solenoidal vector amplitude
are inessential. It is important however to note that while the temporal behaviour of the
coherence function can bc deduced from its spatial dependence, the polarization

dependence must be specificd explicitly.

The non-stationary case is not different in principle. We have for the coherence
function with scalar analytic signals, the equations of motion

ffmmmnm=J~memnm

f

i -%" Pr 2,71, ra) = \/ - V: i (l', I, Iy fa)

4

where ,/ — ,? is an integral operator defined by

"\/jvl* T (rt,r ) =02x)"" ,[ d’q | g exp (iq-r) X

Jdl r exp (—1iq-5,) L, 1,1,1,)

Hence, if T (r, 0, r, 0) is specified for all values of r,, r, we can compute the general

second order coherence function. The temporal behaviours are again completely

determined in terms of the spatial dependences.
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Praperties of the reduced coherence functions

Because of the postulated requirement that the mapping of the stochastic
variables preserve reality and uonnegativity conditions we can show that the reduced
coherence function vy (¥, r, T) satisfies the inequalities [1]

O<iymrnr)] <1,

1A

0= |vyi{rr,0] 1.

For the nonstationary case, we have, correspondingly

A

OSIY(:’],ryrirJI == ])
1.

IA

O< |y, re)]
Tt can be shown [5] thatif | ¥y (rr+) | = 1 for all T and some one value B of r, then
for this value R we must have
YRRT)=cxp(—2wivT)
for a suitable . We can further prove the following results [6]

(1) 1f for some pair of values r, = R,, r, = R, and for all real values of 7 the

reduced coherence function is unimodular, then
YRR T)=exp(if —2mivT)
where 8 and v are independent of T and v satisfies the factorization property
YR 7)=vy (R R0 v (R 7)
for every point r.

(2) If for all values of r, and r, in 2 domain of space and for all real T values
the reduced coherence function v (r, r, ¥) is unimodular, then it must necessarily be

of the form
yrrr)=cexp{ila(r)—a(,) —2rxv7]}

where o (r) is a real function and v is a nonnegative constant. These theorems require
only the nonnegativity property of the coherence function I (r,, r,, T) which implies that

KF* (1) F(r)> = 0
for all F (¢) of the form
F (1) = [ dr f () V(r’, t+T {r'))
and in particular

F(1) = Bi Vit + ).
b
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The last one leads to the nonnegativity condition

n
E 2“5*7(7j7k7‘;~1‘k)mk20
j=1 k=1

which forms the basis of the proof of the results stated above.

If we consider instead of the unimodularity for all 7, the case of tae
unimodularity for all points r, r, for some fixed 7 we can again prove some similar results.
.We have for example the following result :

Given that for some times f,, f, and all pairs of poinis r,, r, the reduced
coherence function vy (r, t, 1, t,) is unimodular, it must factorize in the form

y (r, t,r, 1) = exp {1‘c¢ (r, 1) —ie (r, t)}

where a (r f) is a real function. This result could be proved in essentially thc same
fashion by use of the non-negativity property of the reduced coherence function, We shall
not prove it here but show that it is a special case of a general theorem about wave fields
with unimodular coherence of any order. In the later part (Sec. 4) of this paper we shall
prove the more general theorem in a fashion which applies equally well to ‘quantum theory
and classical theory.

Decomposition of a coherence function as a sum of coherence functions with unimodular
reduced coherence functions

We now discuss a result which deals with the second order coherence functions
for partially coherent fizlds, but which does not have an immediate generalization to higher
order coherence functions. For this purpose we note that the coherence functions
T (r, t,, Ty t,) constitute a convex cong [6] in the sense that, if T (r, t, 1, f,) are a set of
coherence functions and A are a set of nonnegative numbers, then

Fntetat) = > A& Tw (51,51
k

is also an allowed coherence function. We might now ask what are the generators of such
aconvex cons. To make the problem more tractable we shall restrict attention for the
moment to coherence functions which belong to the Hilbert-Schmidt class of square

integrable functions : J d’r, j dry | T (r,t,1,1,)|* < o. Fromthe discussion carlier

in this section it is clear that we could without loss of generality, restrict attention to
t, = t, = 0. Now it is clear that if

(L.12) '« 0,r,0) =rI(nr,) = Z Ak Tw (), & =20
K
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then without loss of generality we may chcose
Joan [ eniro @ =1

for all k. Since the reduced coherence function is unimodular if and only if the coherence
function factorizes it follows that uanless all but one such Ax are zero, the reduced
coherence function obtained by the convex linear combination cannot be unimodular, We
¢an now ask whether the generating elements of the convex cone of colierence functions
are all unimodular, ie., whether we could express every coherence functior in the form
(1.12) with all the Cuo (r, r,) chosen such that the corresponding reduced coherence
functions yeo (r, ry 0) being wnimodular. The answer is in the affirmative, and applies
to the wider class of *“‘completely continnous™ two-point functions (which, of course,
includes the Hilbert-Schmidt class).  We state the precise result in the following form :

¢ Let the coherence funciion T (r, r,) considered as the integral operator
(1.13) I'¥(r) = j & T (r, 1) P (1)
be completely continuous. Then the coherence function can be expressed as the convex
linear (possibly infinite) sum of coherence functions with unimodular reduced coherence
functions.
" To prove this result it is sufficient to consider the eigenvector expansion for the
““integral operator” T (r,, 1,)

(1.14) Lrr) = E A fi* () fe (r).

Such an expansion always exists for a completely continuous operator [7]. For a
nonnegative operator the Jyx are nonnegative. If we now identify Ty (r, r,) with

fiX(r,) fx(r,) we have the desired result.

Earlier in this section we have shown that the f, = f, = 0 values of the coherence
fupction determines the coberence function for all times by virtus of the equations of
motion. But if the coherence function factorlzes at ¢, = ¢, = 0, then it must factorize

for all times in the form
“15} F(k} (1‘1 L f,) == fk* (l’, rl) fk (l"! ‘a)
with

(1.16) ety =exp (it f =9 cm

={2ﬁ}"jd’qexp (iqr—ilglit)x

j dir'exp (—iq-r’) fr (¢').

Hence we have the theorem :
The (second order) time-dependent coherence functions (which belong to the
comnlately continuous class) constitute a convex cone. The generators of this convex



Quantum Theory of Partial Coherence 129

cone are given by coherence functions whose equal time reduced coherence functions are
uynimodular.

The restriction of the discussion to the completely continuous class of ccherence
functions is not of any consequence for most physical situations since even the subclass of
Hilbert-Schmidt integral operators are too wide a class @ in most physical situations we are
interested in the total energy in the field to be finite. With the electromagnetic field be'ng
characterized by the coherence functions of the electric or magnetic fields, this

jmplies that
Jd‘r T(rr,rt) < oo,

so that the nonnegative integral operator I' (r, £, r, f) belongs to the trace class. Now it
is known that this class is a proper subset of the class of square integrable operators which
in turn are contained in the class of completely continuous operators. So the
decomposition theorem applies to all such cases. If instead of using the electric field we
use the vector potential to construct the coherence functions the sume decomposition holds
in all cases where the cohzrence functions are bounded at infinity.

It has been pointed out to the author by C. L. Mehta that the blackbody
coherence functions are an exception to this rule; in this cuse the trace diverges. But we
could express the coherence function in this case as an integrul over coherence functions
with unimodular rzduced coherence functions.

Outline of the contents of the following sections

In the following sections we give a systematic development of the quantum thesory
of partial coherence. In Sec. 2 we discuss the question of the determination of the
(classical) unequal time coherence functions from their equal-time boundary values.
A result of this study is the identification of the wave number spectrum and the frequerey
spectrum. In this section we also discuss the measurement of the higher coh:rence
functions as a prescribed linear combination of intensity corrzlations. In Sec. 3 the
complex variable description of a quantum-mechanical system is introduced and related
to the definition of second order coherence functions. It is shown that all the known
properties of second order coherence functions in classical optics is recovered in the
quantum optics of second order ccherencs,

Quantum theory of coherence functions of arbitrary order is introduced in Sec. 4.
For those states which have excitation in only one mode, the coherence functions factorize :
such fields of illumination are referred to as “mode-pure.” In terms of the coherence
functions a new set of quantities cailed the “ coherence indices " are dcfined; they are
generalizations of the reducsd coherence functions of second order. For mode-pure fields
the coherence indices of all orders (g, g) are unimodular; the converse problem of
determining the density matrix of a field for which some coherence index is unimo lular s
posed and solved: the states involve only somz few phoion states in addition to a
mode-pure excitation. It is shown that all “higlier™ coherence functions are also

factorizable.
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The theory of mode-pure fields is taken upin Secc. 5. The coherence functinns
are defined in terms of a mode function and a sequence of moments.  Several incqualitics
satisficd by those moments are derived.

“The use of coherence functions to specify the statistical state of a system is not
adequate to cover the general case. A methed capable of desling with arbitrary statistical
state in terms of characteristic functionals is deveioped in Sec. 6 (for the mode-pure ficlds)
and in Sec. 7. The problem of determining the deasity matrix from the characteristic
functional is posed and solved ; a fundamsntal role is plaved by the diagonal representation
of statistical states in this reconsiruction of the density matrix from the charactzristic

functional.

Fields of illumination which can bs obtained by mixtures of mode-purs
illuminations are studied in Sec. & In this section a nzeessary and sufficient criterion for
such a field of illuminarion is presented ; this involves the use of an auxiliary two-point
function. Several theorems concerning such fields of illumination are stated and proved.
In Sec. 9 it iz shown that the only excited modes are those which occur in the eigenvector
decomposition of the second order coherence function. This result has a simple form

when re-expressed in terms of the characteristic functionai.

The questions of equations of motion, conszrvation laws and the coupling with
arbitrary timz-dependent dynamical svstems are not discussed in this paper. The author
hopes to return to these questions in another paper.

2. HiIGHUIR ORDER COHERENCE FUNCTIONS ! CLASIICAL TITEORY

In recent years experiments invelving intensity correlations. photoclectric counting
distributions and phenomsna occurring in high iniensity laser bzams have made it necessary
to consider processes in which higher order cohberence functions have to be studied [8].
Tn elementary optics one is mainly interested in intensity distributions but the propogation -
law of intensity automatically involves the twopoint coherence function: on the other
hand, the coherence function can be studied by studving intensity distributions on a scresn
illuminated by pinholes at the points of which the coherence function is being considered.
Similarly even if one is interested only in two-point intensity correlations directly, we have
to study the general four-point coherenze functions and so on. We are thus led to consider
the gensral coherance function of order (u, v) defined as [3]

{21) r ( Tpveeranees Xy Myeeens }’u) = <V* ('T1} e ('\.# } V{JPL) '''''' ¥ ( ,“")>
where V' (y) coasists of the “analytic signal’” (positive frequency) part of the field

e
(2.2 Vi) = l a, u, (x)
@€
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Here ¢ (x) are 2 complate set of positive ensrgy mode functions. We shall adopt the con-
vention that the label x stands for the space indices as well as polarization labels but not the

time.

Determination of the unequal-time coherence function from equal-time coherence
Junctions

In view of our remarks in the last two sections, for a free field the time dependent
operator V (x, ) will contain only positive frequencies and therefore it would okey a first
order equation of the form

(2.3) i~§7 Vi) =+, - v Vi

so that the time-dependent coherence functions can be constructed from the knowledge of
the time independent coherence function of the sams order (¢, v) at all points (and ail
polarization indices). We have for example

(2.4) T (xit B lyawmna Yoty

= exp ( T I‘ri \/ . vla) P (.‘C}OI, fs censavane Py IV')

= €Xp (+ !'fl",\/ = VI”) r {xl o, Iy semrnnens b | ¥ fv')

where exp{ — it \/ -V, } and exp { + it,’ \/ — 7, } T

integral operutors respectively with respect to x and p, of the kind discussed in the

previous section. Hence, we can restrict attention to equal time functions without apy

essential loss of generality.

Coherence functions and intensity correlations

The coherence functions of orders (4, ») with g = v are closely related to i~
point intensity correlations and are therefore of most immediate interest. Considered as
matrix in the indiceS X,.eeerewes Xpgy ¥y cveveenen Vi they constitute, by virtue of their
definition a hermitian nonnegative matrix. By virtue of the integral propogation law, the
propogation law for the g -point intensity correlation involves the coherence function of
order (g, ). Onthe other hand we can study the (g, z) order coherence functicn in
terms of intensity correlations [9] by considering 2¢ pinholes (of equal size) at the points
Nooomases Xpt. ¥y eeeresees Y With phase shifters at each of these points, Making use of the

elementary identity
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@5 wlo=@ra)f o) —w©-olv-w
fitv—io (v—iw) = i+ ia) (v + im)
' _we have the equality
| Jier VPN 1R Ly eavasnsony P B P A vavnasvons )

= POV (E T x; fyueiissn | & Tty susasn )

FILE oz Brsssienesy BT Yl vwwnanaass)

-{_

— TO(ET x; fyeeenerene s ET Yy 1y veiicnnad)
= PO (B foasimn s B T Ve ) v )
where 'O (£ T x, ¢, ceeeverea 3 E T Y3 1) eeeeeeenn ) s the function obtained at a poiat £ at

time T illuminated by two pinholes at x, and y, with phase plates furnishing phase
differences -

6, — 8, = — jrs[2

and a path difference equivalent to a time delay

' r

Tyries Ppa= fgems Iy

-

The quantity « is a measure of the size of the pinholes and the distance of the peint Z
from the pinholes. Proceeding in this fashion we obtain

2
(2.6) (2/6) “ T X, 1, Xy tyeenrenees 3 Vo 8y Vi 1y erremn)

L E (f)j: +J'= s B jﬂ T (.}1 ‘"j.“) (El T 51 R El T E’ 1-_1)
| eesnadn

where each of the T (Jyseeee ) is an intensity correlation at equal time obtained by
combining at the points £, the illumination from the pinholes at x, y, with relative phase
shift §," — §, = — j, /2 and a path difference equivalent to 7! — 7, = ¢, — 1,; at the
point £, the illumination from the pinholes at x,, v, with 8,/ — §, = — j, 7/2 and
T, — T, =1, — 1t and so on. Hence the (g, z) order coherence function can be

obtained as a linear combination of 2° equal time intensity correlations.

3. QUA;\'TU}{ THEORY OF SECOND ORDER COHERENCE

The discussion in the previous section was within the framework of classical
optics. While it provides us with a complete theory of second order partial coherence onz
would like to see the modifications introduced by quantum theory. The basic question is
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of coursc the quantum mechanical definition of the light amplitude and the rule for
associating the coherence function with a quantum mechanical state [10, 18]. Thereis no
question of considering a complex value for the electric field but we can associate a
complex function of space with the annihilation part of the quantum mechanical field
operator. For a free ficld the annihilation part is associated with positive frequencies [11]*
and in this case the complex function of space that is associated with the annihilation part

of the field operator will be an analytic signal.

The complex variable description of a classical canonical system

To make this identification we consider a free harmonic oscillater with the
equations of motion (we choose the mass = 1) :

d
EQ(" =p(r)

%p (1) = — w'q (1)

the general solution to which can be written as
p(t)=p(0) coswt — wgq(0) sin w¢
g(t) = w 'p(0) sin wt + ¢ (0) cos wt

If we now chcose the complex plane and choose

x=Rez=,[la[2¢q
y=9dmz=,[/1{2wp
then the vector

(.1) z=x+iy=(1)20)} @q -+ ip)

may be used to denote the instantancous state of a classical oscillator. The state
represented by z = 0 corresponds to the lowest energy state. As a function of time the
vector z () rotates in the counterclockwise direction along a circle of radius

IZI:(EN)_%((‘-‘zqe‘FP‘)_%

so that the square of radius is the total energy of the oscillator divided by the angular
frequency. The state labelled by the complex number z can be obtained by starting with
the minimum state (labelled by = = 0) and displacing the complex dynamical variable
wq + ipfromOtov2w = Since the dynamical variable (ig + ™ p) is the generator of -
displacements in (w ¢ + ip) so that :

In general it is esszntial to distinguish between the annihilation part of the field operator und the
positive frequency part [11].
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(3.2) (D oy o™ pls, p=ssaty

so that the exponentiation of this transformation would generate the state z from the
state 0. We can make these dynamical variables appear more symmetric if we consider
the complex dynamical variables

e
(2 w) s (wg =k ip)

which have a Poisson bracket of /. It is relevant to note that the equations of miotion for
the free harmonic oscillator give

(3.3) {wg(n=ip()} =exp(xiat) {wq(0) =ip(0)}

so that we could identify the complex dynamical variable (2 w) — 3 (w g + ip) corresponds
to the positive frequency part of the real coordinate variuble g (1) (apart from the factor
v 2], However, whether the equations of mation of the system corresponds to a free
harmonic oscillator or not, as long as the system has one pair of canonical variables
needed to describe it.  We would describe it in terms of this complex canenical variable.
In the general case the representative point will no longer move on a circle but describe 2

more complicated phase space trajectory.
The complex variable description of a quantuin canonical system

It is remarkable that while in quantum theory we cannot specify the state by
the values of ¢ and p we can label states by a single complex number z and that these
states are obtained from 4 standard state labelled by O by using a displacement operator
[12]. In this connection we consider a pair of canonical variables ¢ and p satisfying the
commutation relation

(3.4) ap — pqg =i

(We choose units such that h = 1.) Then we may construct the operators a and al
defined by

(3.5) a=(2w) "t (wq+ip)
al= (20) T (wg - ip)
which then satisfy the commutation relation

(3.6) idl —d aes
We can now set up an infinite family of quantum mechanical states labelled by a ‘single
complex number which are eigenstates of the destruction operator as follows :

alQ>=0=010Q>

where | £ > is the ground state of the oscillator defined by

(3.8) 5l'an s ==m,
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. . i Rl e by G
The state corresponding to the eigenvalue z of a is constructel .~ ¢ °F dispiacement

operator aT to obtain
| exp (:aT) Q>
which has the property
a exp (zaﬁj Q> = zexp (zaT) (55

‘If we denote by | z > the normalized eigenstate of @ with the eigems = 7 2550

(3.9) Iz>=°XP(5ﬂT—§IzI’J|Q>
[03= Q.
For a free harmonic oscillator these special states have a simp. «=¢ Jependence of
the form
(3.10) 5, 1y sexp (= daotala)] 3= [re— 18

so that just like for the classical ocillator the representative compley . ¥ MOVeES along a

circle at uniform speed in the cleckwise direction. In the mo:e sencril case of an
arbitrary quantum mechanical system described by a pair of cane vl variables, un!.ikc
the classical case, the time dependence of these states cannot be repucsiied DY _‘hc motion
of representative point in the complex plane. It has been pointed .. fhil as longas the
equation of motion for the operator a contains only functions of the sohilation operator
wc could describe the time evaluation by a phase space trajectory. t'or o Hamiltonian
system only such eguations of motion are linear in the annihilation cyvidoF

These states constitute an over-complete family of staws . the completeness
property [12] is expressed by the fundamental identity

(3.11) ﬂ"‘Jd’z[:)(:J =1

so that, everystate can be expanded in terms of these in the form

(3.12) [?”)zﬂ"J‘d?z<z,"¥J>]:>

and every operator can be expressed in the form

(3.13) B=rfazfagcz1810 25¢0

Of particular interest in this case is the equation of moticn (i the oscillator with



126 E. C. G, SUDARSHAN

a linear coupling to an external variable [13]*. The equations of motion can be written in

the form
_ff__ 1) — pt)
7?71’“’ =j— gt

and they can be reduced to the previous form by the change of variables
gl)—rgt) — wtj

pl)—=p A1)

The representative peoints are now displaced by (2 ©°) %j in the negative ¢ direction.
The time dependence of a state is now represented by motion in the clockwise direction
along a circle centered at the pointx = — (2w°) ~ 2, y =0,
Complex variable description of the free field in quantum theory

The Hamiltonian for a frec scalar field or the free electromagnetic field can be
cast into the form of the sum of the Hamiltonians of an infinite collection of free (ideal)
harmonic oscillators. Correspondingly we could expand the real ficld operator ¢ (x) and
the canonically conjugate real momentum density v (x) for the scalar field case in the

form

(3.19) p(x) = E { ag g (x) + aT u,* (3 }

wx (x) = E { a, u, (x) — aTa u* (x)}
-3
with the u, (x) furnishing a complete set of positive frequency wave functions which .

satisfy the orthogonality and completeness relations

(3.15) j & r uy (%) up () = 8,5

D gl g () = 8 (5, = x,).

x

By virtue of these we have the inverse relations
(3.16) a, = jd‘ x u* (x) p (%)

a“T = jd’ x u, (x) @ (x)

+ The most general case of motion which can be represented in terms of a trajectory in z-plane
has been studied by Glauber [13].
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The overcomplete family of states associated with the field operators is thus essentially the
oL
I

family of states associated with the operators a,, a, These states can be labelled by a

set of complex numbers z, one for each mode as follows :

(3.17) Ay | 2y Zygeorvacsas D = T, | 2y, 245 cennganea D
= sxp{ —-%}jjza g} exp { E z a;r } [0,0,......._..)
- o

o

These states associated with the annihilation part A (x) of the ficld operator the complex
function

(3.18) ' e S u, (x)

Definition of the second order colerence functions in quantum theorv

The fundamental definition of the quantum theory of partial coherence is
the equation : >

(3.19) C T (X)) = tr (A () P AT(x)}

where P is the density matrix of the state and A (x,), AT (x,) are respectively the parts

involving a and al in the expressicn for the ficld operator. We may rewrite this in
the form -

(3.20) T (3, x) = Z‘ U (%) ug (x,) tr {aﬁ p az}.
. x, ﬁ

For the classical coherence function we would have in place of this equation
the relation ' '

3.21) C T LA =) () ug (x,) <@, ag>
- o« 3

C= J d* z, J d* 75 i, (2, 74 -22) 2.7

where z, stands for the classical stochastic variable corresponding to the quantum
dynamical variable a,. The distribution ¢ (z,, z,...) takes the place of the density

mattix P, There is thus a formal correspondence between the classical entities and their
Quantum counterparts. This correspondence has formed the motivation for the statement
of the Optical Equivalence Theorem ; and for its rigorous mathematical formulation in
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terms of distributions. In Sec. 6 bclow we would come across the quantum theory
definition of thz distribution ¢ (=) corresponding to the so-called “diagonal representation.”
This correspondence is discussed at length elsevherz, and it is shown that such a
distribution can ba definzd unambiruously so that the expectation values of all (bounded)
dvnamical variables are uniquely spscified.

Propertics of second order coherence functiors:  Comparison with classical theory
For the present we need note however only the properties of the quantities

L
tr {‘?,3 Pa } . It fellows from the non-negativity of the density matrix P that the matrix
a

Fa;; = tr {aﬁpa:}

is nonnegative so that the quantum coherence function T' (v, x,;) is nonnegative. Further

: ' - ’ t1) ¥
since the entire x,, x, dependence is contained in the *““mode functions”, u, (x,) and
ug (x,) for the free ficld, the time development of I (x, t,, x, 1) is entirely governed by
the time development of the positive frequency mode functions. Since the time depzndent
mode functions u, {x t)are analytic signals (by definition) it follows that in the variables
1,, 1, the coherence function satisfies first order differential equations. Hence their values
at ¢, = ¢, = 0 for all points x,, v, determine them for all times. Finally the nonnegativity
properties automatically lead to factorization for unimodular reduced coherence functions ;
and to the theorem on the gencrators of the convex cone of coherence functions. Each
of the generating elements of the set of coherence functions correspond to excitation of
the field to a suitable extent in one mode only.

Thus all the results of modern classical theory of second order partial cokerence
are unaltered in the guaitum theory formulation. (It is necessary to point out that if
instead of using analytic signals in classical theory and annihilation paert of the field in
guantum theory we had worked with real ficlds in the classical theory and the hermitian
field quantum theory this correspondence would have been different.  However there is no

need to work with real fields.)

Finally, the restriction to scalar fields can easily bs removed. The only
modification is to muke the mode functions mere complicated. For the case of the
electromagnetic field the mode functions should contain either a two-valued polarization
(helicity) labzl, or bz expressed equivalently in terms of solenoidal vector wave functions,
Since these complicarions are purely Kinematical no harm is done by ignoring these
complications in the preseat investigation,

4. HIGHER ORDER COHERENCE FUNCTIONS : QUANTUM THEORY

Having demonstrated the equivalence of the quantum theory and the clussical
theory of the second order coherence let us now return to the properties of the coherence
function [10]
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Il

(4.1) PP ) = D(xp e Xy 5 Yiveeenny, ) = U5 {f-‘('% e a (x)}

= tr { AT} snad (}’# )P A (X)) eere ,»{T (_-(#} }

of order ('u' fhie B}' virtue of itz dCﬂﬂiEEOil, we have

(4.2) T3, 5) = T* (S emeeee Xy 0 Y ey, ) = T (p e ¥y s Ko, ) =T (3, %)

# }
and', henee, for the time dependent functions

(4.3) Pl f e ""p !,ﬂ )= T* (1, WY =T {yi—=t), X = t)

Cousidered ns a matrix in the indices x, ...... X, G 2 uamee Fja T (x,3)"is a non-

negative deiinile matrix in the sense that

(4.4) jn’_\',_.. Y(J’.\‘# f(,\‘l..,_\-'u ) T [_\‘1...3(# y Fred, ) i’ 2% ra [-d_v# 1* (3y... -T.u) T (x, ¥)

- -

= J dis Fl J dy £ (5) 1—- (x,7) = 0

From its dehnition it follows that T' (x; y) is symms=:riz =z7er any permutations of the
variables X, Ny, ceenery Xy and under any permutation c¢? <=z vzriables y, ..., Fn The

nonnegativity of I' (x: ») is a consequence of the noz-=zzzwity of the density matrix P
since the expression above is simply the trace of the nczzzz: i vs matrix

e P C-{_'L where
f
Gl = J dy f(x) 6t (x) = J.d_\‘l...... J o % Pl oA ik s A (x
By considering the operator

(4-5) D) =d(x) - "L =y

optical diseri~iname of order (g, u) ziven by
(4-6) LEN=TEHNTx =~ = = Ty
is nonpositive : N\ (x;y) = 0.

Let us define e coherence index of order (u BBy (1 e

(4-7) Six.y) = \/TI:—'{';{—}—? __,

e We o300 these quantities cohirance indices rather t-:- ~r__z=I ‘or normalized) coharance
functicas since there are several such definitions alread: .- -=———.=2 Ji7]L
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The Coherence Index so deflined coincides with the reduced (or normalized) coherence
function for 4 = 1 (second ordsr); since for higher order other authors [14] haeve defined
different reduced functions, to avoid confusion, we shall refer to these reduced Guantities
as cohercncs indices in the sequel.  Then the nonpositivity of the optical discriminant
implies that the absolute value of the coherence index camuot exceed unity :

(4-8) 0= |8y =]
We have the following relation between the optical discriminant A (x;p) and the absolute
value of the cohzrence index :

Ay = {]SEN" 13T (x0T (yp)
The optical discriminant (+-6) vanishes if and only if the coherence index is unimodular.
In this case the nonnegative matrix D P D! must vanish :

N — .
DpD —-Oi_ISI—I

We shall sce later that this iraplies 2 very special form of the density matrix specifying the
state of the system. _
For the more general case of the coherence function of order (z, v) we may write

(49) T ) 55 Tilucarms Mgt vaveesy )

We now define the optical discriminant for this case by

(»

(g w) ( ) (y ) { } y)
AN ey =T ) T o =T ) 7 ()

which can again be shown to be nonpositive by considering the operators

() 2 .
(4.10) D(xy)= " (x) - }I%_ﬁ.fb;“)_ 0

and the nonnegative matriz D P DT

where

A () = A(5) v 4 (x,)

Gfm ) = A4 () A (3,)
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We define the coherence index of order (g, v) by

(e, ¥) ;
(4.11) S(ﬂ’ ﬂ(x; 3 I —— ,I‘....,.,,__(x’ ))_._._.______:

(r p) o v
\} jesad (x, x) o (¥, v)

Then we have the relations

o ; : ; " (a, v i
Further the vanishing of A implies unimodularity of S " and the vanishing of the
matrix .DT P . We shall see later that this also implies a very special form for the density
matrix. '

Given the density matrix P for the system one can attempt to caleulate all the
moments I' (x, ). We may therefore attempt to characterize [15] the nature of the optical
field by all the colierence functions of 2ll orders (g, »). In many cases such a characteriza-
tion is possible but there are two drawbacks to thus scheme. First, not all- the moments
may exist; they may diverge! Second, even if they all exist there is no guaraniec that the
density matrix is completely characterized by them. There is a more satisfuctory method
of characterizing a eeneral density matrix in terms of the characteristic functional [16].
We shall content ourselves here with noting this circumstance, but this topic is discussed in
more detail in a later section.

Time dependence of the higher order coherence functions
It is instructive to rewrite the coherence function of order (g, ») in the

following form

S v
(4.12) 1 = (% wess Xyy Vieees k)
2 ) * y
= u X ey ] e 3
) ; " - ua'“ (Y.u)”:if)*) uﬁv{'lv) "
T AT {a a P aJr aT 1
By e B 6, %, P O, 8

It follows the unequal time coherence functions can be computed if the equal time cohererice

Sfunctions are known at all sets of poiits.

“ Mode-pure ™ fields of illumination.
There exists a special class of fields in which there is excitation only in one mode,
say u (x) : in this case the coherence fuactions factorize in the form [17]
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(P70 ‘
(413 T (X, covses S PIED SRS ¥y
= 0¥ (V) e 0 () (1) et () A { o' pat” }
= gf#, ») Dl i) IR (,\-#} 1) e T ()

. . e v o (e, #) .
In this case all the optical discriminants A" *° (57 y) vanish and all the

for all g, ». :
coherence indices Sm’ & (x; y) are unimodular. In fact
*
g (x,) = u* (x,) I.u (x, ) u(r) o u(y,)
i w(x) T ulx,) wt () u*(y,)

Such an optical field may be called “mode purs” and may be characterized by specifying
(g )
the mode function u« (x) and the sequence of moments g i they exist. These fields

are treated in greater detail in Section 5.

Unimodular coherence indices and the factorizability of col:erence functions
We now wish to show that the converse of this result holds in a slightly weakened

" ol (g, ») (g )
form. We wish to show thatif [S ™" (x:;y)|=1,sothat A"’ (x;y) = 0, then

the (g. v) order coherence function must factorize. We first of all observe* that since

( vl s . p :
At (x; ») is the trace of a nonnegative matrix, whenever A vanishes we must have
Dy ol =o where, as before,

LT L .
D(xy) =d i (x) — -F———u C‘ft ) (»).

r vty y)

But the density operator P is a ncnnegative compieicly continuous operator with the
eicenvector decamposition

(4.14) P = :\_‘ pyvmete: su) 2o.
A
Hence

ppol=0=Npw (pv (v
A

# The technique of preof follows Titulaer and Glauber {17.
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This is possible if and only if
(4.15) DY (i)=0 P(i) =0

for all the eigenvectors % (1) with nonzero eigenvalue P (2). It then follows that all
these states ¥ (1) have the property

(4.16) Gt (x) ¥ () = ??’x} )% ()

This implies, in particular, the relations

P T

NP
C'll(r}lo r(’}’,}'}C"{)P

paf ) =L {(x, ‘,; P all (x)

which imply
1" {'\ 1]

w{amea o }=1 et { e al v}

=.I-‘
F(x x')

Dulamealen}.

In other words, we have

Cpe o » #
w7t (x'y) [ 8 (x, X1
Making use of the definition of the coherence indices we can rewrite these relations in
the form
(417] e Ly ¥) (.\', ),} — g (f, ) ()C, yJ) o {vy ¥) (},J y)

=S (g, g (X. xr) S (g, v) (_\.r J’]

These equations are valid if and only if

SEB (xx)=a ¥ ()o@ ()
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ST =) e )
SR (x 3 =a™ ()¢ P (x).

Mow the complex conjugation relations

{S Cfty ¥2 {I, }’}} * = 5 ¥y {,V, x)

and other similar rclations are automatically satisfied. Note that ¢ % (x) and ¢ ()
are at the present time two independent functions in the relevant variables. They must
however satisfy some additional constraints by the Field operators which we now proceed
to derive as follows : We can substitute these results back into the equation

s 1) gy, .
Gf (473 (.‘f) p = r {}. X} C"f o) (y) P
T (77) {y’ y)

1o derive
(4.18) ' 6P ()P =a®(x) BP

where B is a suiiable operator of gt degree in annihilation operators and ¢ (x) is
defined by '

a® (x) = ¢ ® (x) \/m

Now consider

AE) A (e A(x,) P = A (1) serene A(x,) 4@ P
=l (ET 0 (X vcain x,)BP
=A(x,) 0 (x, e &) BP

Hence,

(4.19) A@E)Bp = A(x,) Bp.
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It follows that g ¥ {x) must factorize in the form :

(0] —c. ¥ -1 .
L R € M x‘&} c-a Gy e Xy _ ) u(xy)
with a suitable mode function # (x,) and ¢ is a suitable constant. But by reason of

symmetry of o' (x) in the g variables it follows that we can factorize Pt (x) in the form
#) (o B
gy == ¢, u (%) e tt ("l'ﬂ)
where ¢, is some constant depending on the nature of . Similarly
AP (e =a)CP; «PO)=c, u)eu(y)

where ¢, is soine other consiint. We have thercfore established the result thai the

coherence functions of orders (g, v), (¢, ), (v, v) factorize in the fashion

(gey ¥

(4.20) PR Xy3 Viewd,) =g 45 (X)) wennen 1 (p,)

ly ) o 5, WO .
I {xl e xﬂ: xl! ---.‘CP J — g!, e u* (xl] ees U (I#’}

{yy, ¥

[ Doy, il S ™ P00 Yt ()
with

g P = cﬂ* B P { GF’.’ﬁT}

g# B —| ¢ Entr {.’BPJBT}; grv’”‘—'jfprff {GPG'T}.

@l

The density matrix of states with a unimodular coherence index

We can now determine the most general density matrix P consistant with such a
factorization. For this purpose we note that for every one of the states ¥ (4) for which
P(1) #0

Ax) P =¥ (x) By
Hence the states B ¥ have the property that
“.21) AE@ PPV =uE)aB®y

where

(4.02) g J'd £ (£) A (2)
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Hence only one mode is excited in the state B'*' ¥, namely that - one with' the mode
function u (£). We represent this state symbolically by an opzrator function of af acting

in the vacuum state 0 :
(4.23) S Wy =F (dha

i . i fr) - ;
But we are interested in the state % and not B Y. Now B%is an operator of degree g
in all the annihilation operators which would annihilate every state with excitation of all
modes together less than @ quanta. Hence the gereral solution to ¥ is given by

(4.24) V=N {F(aT) + P {,f!'}} o

where P (ATJ isa polynomicul functional of the creation part of the field of degree less
than g, F(a') is a suitable function of the creation operator al associated with the mode
u (£)and Nis a suitable normalization constant. The general density matrix P is hence

given by

p=>p) M) {FEh+ 2N} 2ol {F@h+ 2, ah}T
A

with P (1) nonnegative and summing to unity. By considering the correspoading relations
obtained by starting from the relation '

AG) Y =a® () B

we note that the degree of the polynomial functionals P (AT) mast be less than » also,

Hence the polynomials may be denoted as P (AT) (AT} with degree less than min. (g, »).
With this understanding we have the general expression for the density matrix consistent
with unimodular coherence index of order (y, ») :

) {Fy @+ pyh Y aal {F@h v o)

with the normalization constants absorbed into the definition of tke operators Fy, Py

We have thus proved the following result :

TueoreM 2. If the coherence index of order (i, v) is unimodular then the coherence
functions of orders (g, ), (u, ») and (v, v) factorize in the form (4.20). The most
general density matrix consistent with such a constraint is given by (4.25).
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In view ¢f this structure of the density matrix it is straightforsward to observe

) r
that all coherence {uactions I * " ) of order (¢, »') must also factorize provided only the
modepure comperanis F, O of the states P contribute to thesz coherence functiouvs.

This happens when max (g', »’) = min (g, »). We have thus the following result :

CoroLLAry 2,1, I7 the coherence index of order (x4, ») is unimodular, the coherence
functions of order ', »") will facterize provided

max (u', »") = min (g, »).

The coherence ind'ces S*'7 ¥ (x, ) will not in general be unimodular but will be
constants (independzat of x, ) and all coherence functions of order (g, '), #' = min
(¢, v) will be uzaimodular. In particular, if the second order coherence index is
unimodular all cobzsrence funciions facterize ; none of the cohersnce function of order
(@, @) can vanish unless the coherence functions of orders (g, v) vanish for v < p.

Mode-pure illuminazian and factorizable cohercnce functions in classical theory
It is now possible to see that the results of the classical theory of high order
coherence functions are strenger®.  In this case the result

{ Yo i [ .
T® 7 (v, o X 3y ) =87 0% () et () 0 () e ()

implies that the probability measure for the stochastic variable ¥ (£) must be concentrated
on such fields for which

with the variable ¥ (0)/u (0) being distributed as a sinzle stochastic variable, Hence it
follows that the cohzrence function of order (g, ») must be of the form

g(?‘e ”_ H¥ Y ai® (x#) u () ot (y?}

with g% ¥ being given by the expectation value of the guantity (V* (0)/u* 1{(}})’u X

(7 @)
Corollary (2.1) are valid for the classical theory; the corollary can be strengthened to
state that it the coherence index of any nontrivial order (i.e. z +» > 0)is unimedular,
then the coherence functions of all orders (@, ) are unimodular and coherence indices
of all orders S, 7 (x;») will be constants independent of x, y. In other words, the

field is “ mode-pure, ”

v : : L
. It is worthwhile pointing out that the first part of Theorem (2) and

« Comparz Metha [14].
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5. COHERENCE FUNCTIONS OF MODE-PURE FIELDS UF ILLUMINATION

We now return to the quantum theory of mode-pure optical fields. We have
already scen that such a field has a characteristic mode « (£ ) (which includes the specifica-
tion of the space and polarization dependence) and a sequence of the “ neormal - ordered »

moments g"*”’ given by the expectation values [17]

(s ¥) v 4 4
(5.1) g = tr {a gal’ }
If the density muatrix P is expressed in the occupation number representation

p = 2 P(m,n)lmd>n|

n,n

these moments are given by

xﬁ I (g, #)

5.2 DA . ¢ T =il
£ 154, JU=er1(—)1

which nced not exist unless P (m,n) fall off sufficiently fast for m, n = <. As an
example we may consider a simple case

0 m=n
P (m, n)={ 6

xipd m=n

In this case ¢'#*” vanishes for g + » while g'°** and g%* ¥ exist all higher moments

g# P u = 2 diverge,

Properties of the sequence of moments for * intense ™ illuminations

We consider first the wavefields for which g ¥ is larger than some integer 41,

Since the mode function u (x) is normalized, the magnitude of gfl- Y is a direct measure

of the intensity of illumination. We may refer to these cases with gt ¥ larger than some
integer 4 + 1 as fields of intense illumination. There is no guarantse that the quantities

g% ¥ contain increasing numbers as g, v increase. For the spzcial states with the number
of photons limited, sufficiently high moments vanish [17). Let us first consider the some

simple incqualities satisfied by the moments g . Since the density matrix P is nonne-

gative

tr {{a‘“ —Ka)p(ale - K*aT'J} > 0
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so that [17]

{52} g(!‘s M) gh‘l ¥) > ! g{_.':, ¥)
Now if

gt‘“’mntr{a“‘,ﬂah‘} =0

. _ . Bes - _
then the nonnegative matrix ¢” P a ' # itself should vanish; and hence, all the moments

(2, 4

@D 2 > u would also vanish. It then follows the vanishing of g implies  the

g
vanishing of all g% * with max (g, v) = 4. Since the g% * are defined as the expecta-
tion values of normal ordered operators, as g, v increase the moments may increass or

decrease. In particular g'#* #) may vanish for large g, or it may increase as fastas g !.
It is therefore difficult to exhibit simple inequaliiies satisfied by these moments [18]*

Consider, however, the identity
(@)t g+ + Y gt Z afye o ot
a @)y a®" =@y e a a

Since the probability densities P (#, n) are nonnegative we have the inequality

tr<P{(aT}‘“a“}>-tr<P{aTa} >Istr <P{(a1’)”aﬂ}- {afa} >

Hence we get

Pg(‘u’p) + g(lu“‘-’ AR g(,u’_ﬂ.J g(‘, 1)

so that
(@ +1 + 1)
(5.3) _E(—’#__._ > (g — )
glb, #)

Consequently, if g&, " > u + 2 we have

Y 4
W ) T S B & = M (its 1) Ity y o\
gerhet e e BRE e —p—i)T = & g0 —e— )
where the factorials are defined for nonintegral areuemsnts in terms of the gamma func-
tion. We could transcribe the last inequality in a slightly different form :

RSN AL 27
(5.4) ey (gu' by p) O S
gt e

¢ Inequalities that hold for states with positive definite diazonal representation distributions
(according to the optical equivalance thcorem stated in [18]) are discussed by Titulaer and

Glauber [17].
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Thus as long as g 9 is sufficiently large compared with unity, the moments increase in the
beginning. Using the rclation

(p* 4 + D
E%;;_ z(ﬁM—HH%Y;ww2p+z
g l“, H“
we could derive
W p* D )’
.(g (g“l)—‘d— )(g{ll} p-_-g;)#;(g“-‘)zi%-p
(e, £) (v v
g ] g ]
which could be transcribed into thz form
{gw+-’-.#+23}’ , i .
2] = 3 \z -2
55 2(0(1‘!)__-_ ,.) f‘,(m;)___g)
( ) g(gﬁ_ls'z#—z)g(QZ-—j,:‘-l_ﬂ) 2 2 g g 2
provided

(12 1)

b s

g zp+d; 2=z p=2

Absolute inequalities for the sequence of moments

A large number of inequalities between the moments g* #’ which hold absolu-
teiy (i.e., independent, say, of the magnitude of g ¥’ may be derived by relating those
moments to the expectation values of the powers of the number operator aTcz. For this
purpose we make use of the identity

2 &
—1)#-1 A
(5.6) @W?=E%ywwﬁ;@pjzgwlm!

This identity can be established by repeated use of the commutation relation using
mathematical induction butit can be established by equating the expectation values of
both sides in the state | z > which is an eigenstate of the annihilation operator and

comparing coeflicients of powers of | z |*. We have

. =) [ZN s
(zl(aTa}zi:>=/ N? —-ﬁ’"!_- i
~ N=o0
ibdﬂ‘u:iaﬁfEN‘
¥ 2 N

o

”h%

== . P 1.!.!
E'Tp;m{ﬂ—ﬁ
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while
zdzﬂCZIEaT)pa‘" | z) = zdzi‘ {2 P
“ H
Comparing coeflicients of powers of | = |2 gives the required result. Let us now write
' — 2 (s @)

Since these modified moments /i; are moments of powers of an operator, 2 multituds of

inequalitics satisfied by them may be derived.

Let us first show that 4, form a nondecreasing sequence. We note first of all that 4, =1
and unless all #; = 0, 2 > 0 none of the 4; can vanish. We shall exclude the trivial
case h’! = 0, / > 0 and assumc from now on that all the A, are positive. Since the
operator

{ (aTaJl - K{aTa}‘“ }=

is positive for all valuses of k, we have the inequality

h. —Kh } > '{; -
{ P g i I3+# Khw"}

(5.8) By, —h, 2 b, —h,

But we can also see that &, = A, (though A, may or may not be larger than h, = 1) since
) S
B, — E PININ= > p(M N = b
N=1 N=1

where p (n) = 0 zre the nonnegative density matrix elements P (n, n).
Hence, it follows not only that /i, increass with 2 but
.h’t Z (A =1%(h —h).
+1
There is a slightly stronger result
h"’l = max { (A —=pn) {nﬂ*l - h#]} TR

Thus the moments cannot decrease; they must increase unless by — h; = 0 and this occurs
ifonlyifp(m) = 0,n > 1. In this case all the }11 except h, are equal.
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We can show that if the moments are not equal so that /1, / 4, > | then they must
increase even faster. By a suitable application of the Schiwariz identity we can see that

tr { P (a?a }s; L {p {aTa)"“ =(trdp (aTa e .
{ joud p=(e i)

“This could be transcribed into the inequality

h h
T |
(5.10) ;‘ > L
& h# - A
and, in particular,
i h :
P o Ma
h;; hﬁ =

Since b, [ h, > | it follows that h, , , is bounded below by &, (h, | A, )

h}ﬂ-l

th-:

{5.11) }1#*1 =

“The equality obtains only if all the ratios :':” &1 {hp for £ > 0 are equal; and corres-

‘ponds to a system for which p(0) and any one p (n) are nonvanishing; ie. all the
‘eigenstates of the density matrix are superpositions cf the vacuum state and states with n,
?photons where », is integral and given by h,/h,. Thus in gencral the higher moments
‘must increase at least exponentially with the exponent log (h,/h,). But, they may increase
“faster, even becoming infinite. If &, is infinite, 4, . ; must also be infinite.

':6. —THE CHARACTERISTIC FUNCTIONAL OF A MODE-PURE FIELD OF ILLUMINATION

In case any of the moments become infinite, the characterization of the mode-
pure optical field in terms of higher order coherence functions becomes inadequate. On
'the other hand if the moments all exist and increase not too fast the moments can be used
‘to “characterize the statistical state of the svstem. (We shall see below the precise
imeaning of the term * not too fast.”) This circumstance is of course not peculiar to
“mode-pure ficlds, since the higher order coherence functions need not exist for a general
‘optical field in which components with large photon numbers contribute. A somewhat
-different method of characterizing the statistical wave field is avaiiable [16] which employs
‘a"modifizd version of the method of generating functionals. We discuss the specialization
“of this method to mode-pure ficlds here ; a discussion of the gencral theory is given in the
‘next section. '
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The characteristic function for single mode excitation

For an arbitrary complex number
(6.1) L= 1+ i)
consider the unitary operator

. e 1 )
(6.2) W(E, 1) = W({)=exp {f{g*ﬂJrga’f)} e B P R 8k HgEa

_ FHITI +itra +ild
and its expectation value [16]
& =w@=1[pep {iCrat a*)}]

Since W (7)) is unitary the function @ () always exists and has an absolute magnitude no
greater than unity :

(6.3) lo@| =] {p @] st leiw@l} swe =1
We can make use of the completeness identity [12] '

1 3

—J.dz!:><z|sl

T

Satisfied by the over-complete family of eigenstates of the annihilation operator the
re-express o ({) in the form [16, 19]

(6.4) w{tj=ﬂLe%’tigjfztr{Peit*aIz><:ieita}
g - -vT .
=Le%[t'jd”z<:|e'““ el 2>
T
:e%igrijd::exp {r‘(‘c:*—kt*:}}PA{:J
where
gl 4 _m_,N
PA(Z}:L‘(:”":"):LE_{_' S P (m, Nyz¢™ z
T T Lo o Am! N!
m, N

is uniquely defined as soon as the density matrix is given. We note that the quantity
PA (z) is real, nonnegative, and bounded above by l/m~. If we write z = x + iy, and

consider

PG =8, (x, »)
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as a function of two variables x, y we can show [16} that P (x ¥ is both intsgrable angd
square integrable. From the expression for PA (x, ¥) in terms of the elemcnts of the
density matrix, it can bz seen lh:‘llPA (x, ») is the boundary value of an eatire analytic
function PA (z;; z5) in two complex variables z,, z, when z, and z, become real. This
property holds not only for the function associated with the density matrix but for the

function associated with any bounded operator.

In terms of Py {z) we define the characteristic functional

- . . 1
(6.5) N =T m(f}:tr{e“*%e’c“}.
This quantity always exists for all {. Since o ({) is bounded above by unity it follows
that i '
1
(6.6) IN@D] s e | C

For L = 0, @ ({) is unity and hence

Since every bounded operater function of a and al can be expressed as a linear
combination (and approximated arbitrarily closzly by a finite linear combination) of the
unitary operators W ({), it follows that the expectation value of any bound operator can

be determined as soon as @ (J) or N {{) is given [16].

In general there js no guarantee that N () or w ({) possesses power series
expansions in { and {* in the neighbourhood of the origin. However, if it does then we

can write down the Maclaurin expansion )

o™ - Nw @ [ . (:*}m cN

11C2
NE=éIt Tl NI

3 JV i
m, ‘N(a | " @7 =0
which can then be rewritten in the form

s .ﬂ s ey
(6.8) N (@ = E g “—"f‘r_fi? )
&, v

where
gt,u. & tr(a"?a' F)

Hence the momenis g% 72, when they exist, can be computed as soon as the characteristic
function N () of the mode-pure field is given.
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Determination of the density matrix from the characteristic function :
The diagonal representation

We now consider the question of whether the state is completely specified by the
characteristic function N (Z). For this purpose let us consider the integral equation
[16, 20]

© N@ = [d 2@ ep i+ 1)

By rewriting this equation in terms of the real and imaginary parts of z and T we may
exhibit this integral equation as a real double Fourier transformation :

(6.10) NE, = ( J'dx dvp(x, ) exp{2i(xE +ym}

Ooe might attempt to find solutions @ (x, y) to this integral equation in a suitable class of
functions, say absolutely square integrable functions. We have scen above that | N (T) |
is bounded by exp (1 | T |¥); there is no guarantez that considered as a function of £, 7 it
does not increase or increases no faster than a polynomial. It is possible to construct
density matrices for which V (£, 0) increases exponentially or even as the exponential of a
quadratic form. (It can increase no faster, since we have aulready seen above an upper -
bound for | N ({) | ). Therefore if we need a general solution to the quantity p (z) we
may have to go outside the class of square integrable functions, or even of tempered
distributions. But we can always considsr @ (z) = p (x, ¥} as a distribution [16] that
maps the exponential function into N ({) = N (£, 1) in the form

(6.11) exp {2i(xE+ym} P, N

Theare is an alternate characterization of the distribution ¢ which makes use of the analytic
functicn e (2 =P, (x, ¥). Since using the identity

g

. £ 5 TRy .
exifa eltazej"l JC*a ila
we have established

exp (1 L1) [azexp (L= +T* )P, ()

we may rewrite the defining integral equation for the distribution in the form [16, 19]

-

(6.12) Ja”zg) (exp{i(T*z+ Lz¥}=exp (I T I‘)J @ zp, (z)exp {i (T*z + { z*)}
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or, in terms of real double Fourier integrals, in the form

613 [[axadronep@ice+ym ,

= exp (£* + 1%) j. Jr dxdy P, (xv,y)exp {2 (x & + y A H

The class of distributions ¢ so defined is not one of the more familiar classes of distri-
butions. However, the mapping (6.11) is a rigorous mathematical characterization of the
distribution [21]. We note, in passing, that the distribution ¢ so defined 2s essentially
unique : if two distributions @, and p, mavoped all expon=ntials according to (6.11) into
the same function A (Z, 1) then it will map all bounded functions of x and v into zzro.
Hence, as long as. we are interested in bounded functions of x, y (or, more gencrally, in
tempered distributions in x, ¥} we may put g, — @, = 0,

The impertance of the distribution in the theory of modz-pure fields is that we
can recanstruct the density matrix for the system in terms of p by the following diagonal
representation 18] :

p=jd*zrp(z}!z><:l

More precisely, what we can show is the following: Consider the operator P [p]
defined by

(6.14) p[¢}=j(z=’:p(z11z><z;

Then all unitary operators ¥ (¥) and hence all bounded operator functions F (e, a') have
the same expectation value in the state P as in the state P [@]. To prove this result we
compute the expectation value of W ({) to obtain

w (@B W@ =[a: g e HITF (100 55 00170
=exp(—«}!fl“)]d’s rp(z)(:[exp(iﬁaTJexp(ft*a}|:>

=evp (—31T1Y) [d g (Dexp {I(T* = + T =)} = o (D)

This verifies our assertion that P Ip] gives the same expactation value as P for all unitary
operators IV () and hence for all bounded operators. Even if we consider wunbowided
opsrators, as long as they are self-adjoint (or, more gencrally, a complex linear combination
of self-adjoint operators) every spsciral projection will be mapped into zero. We may then
identify P [¢] to coincide with 0 and thus complete the question of the uniqueness of the
state once the characteristic functional is specified. We have demonstrated eisewhere [18]
the fundamental role played by the diagonal representation in coherence theory.
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Alternate method of reconstruction of the density matrix from the characteristic function

In view of the importance of the question of reconstruction of the density matrix
from the characteristic functional for the state we give an entirely different proof [16] of
the existence of a unique density matrix for every characteristic functional. This method
exploits the completensss identity satisfied by the over-complete family of states and the
property of P, (x, ¥) being the boundary value of an entire analytic function e, (2 z,) of
two complex variables. We proceed as follows : Given the characteristic functional N ({)
consider the integral equation

(6.16) J de dy A (x,»)exp 2 (xE +yM}=cexp(—E*—1°) N(E, 1)

where x, y, {, 7 are all considered as real variables. Since | N(E, 1) | = | N({) ]| is
bounded above by exp {4 1 (£* + %)} it follows that the right-hand side of (6.16) has an

absolute magnitude which is bounded by exp {— 3 (£ + 7*)}. Consequencly the integral
equation has the solution

T

A(x, ) = -lzj j.d{{ dnexp{—2i(x& +yMrexp(— & — W) N(E, W)

which has the bound

14 (x, ) < ;H jda dn exp {— } (21 + 1)} =

1
=
Further the function A (x, v) is the boundary value of an analytic function A (z,, z.)
defined by

Az, 7)) = T_'(j J dE dnexp (— E* — 1) N (£, m) exp {— 2i(z, & + =, M)}
If the imaginary parts of =, and =, are denoted by @, and @, we have

4Gz < Ll [dednen (1@ + mexp (@& + 0, m)

7

"_ ey i 2 a
';.t exp "(ml + w, }}

Hence 4 (z,.z,) is bounded for all (finite) complex values of z, and z, and defines an

entire analytic function of order two in either variable. Such a function has an absolutely
convergent double power series expansion.

A (21: ::) e e (m, N) zlﬂl =
m=0, N=0

N
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Let us now construct the operator

(6.17) e J‘ J e, 42, A (Z_t_ﬁ_f‘:s, & .:_Q) ,

T 9 2

Xexp{+C*GL—31LIP=31LIBILG*><T,

i g ALE AT .”‘~t)
s # 3 di nA(: '13=H1 Y
’.?TJ.Jd T 2 2

XCXI){+ Kl*ze_'}]‘C]Eﬂ“"lz'Itzlg}l:1 =< t:|

We now assert that P [4] so constructed is the required density matrix corresponding to ihe
characteristic functional & ().

Proof of the reconstruction theorem

As a first step in proving this result we observe that the Kernel

(6.18) k{l,z) = —exp(Tz*— 1219

1
™

has the remarkable property that for any eatire function f (=) we have the identity

(6.19) [ezk@are=rw.
This result [22] can be verified by writing
oo
f(2) :f(rela) B f[ rJr 110
=0

and evaluating the integral

[==]
jngk(C‘:)f(:)zqi}, f jrdrjd&exp{—rﬂ+tre—fa}rf Sike
=0

- ) 0 & r ok
=7_1.§:rdrjdﬂe_r r e”JiI_’{—E‘% e~ R
/=0 k=0
— e N o o B !
=j2ra’re rE 77 }}-—-}J‘f}ﬁwfduue B
I= ={)
[+ o] i
= Nrld=rw
1=0
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Using the definitioz of P [4] we can construct I
(6.20) <ﬂ>amz>=%{jmmmaA(uw+ameﬁ—m)
Xc“(p{tl*t2_%!tl!9_;—’lt‘]'.‘}<:itl> < C:I:>
1 - s - -
= s [Jetets(tar 0, 1 -)

Xep (LG — |Gl =GP =z PG, 4z *

Using the fact that fact 4 ({ (¥4, iG>~ Ea)) is analytic and entire in {,* and {,

and the property of the Kernels K (z, {,) we have successively

(6.21) <:|P[A]|z>=Jﬂ'=Cg€XP(—!Z]’—|C=|°+-"t,*)

x Lfegmee—it1+200{ 4 (—ti; s e t"')) xp (L. 1,) |

_ 1 B : (7 g -y %
_ﬂ__ﬂ_J.d'C,exp( 105 1 2 L.%)

Hence P [A] has the ‘““diagonal™ matrix elements
<z|P[Allz>=xmA(x,p) 5 z=x+4iy
Hence the characteristic functional corresponding to P [A4] is given by
M) =tr{exp(il*a)P (A)exp(—ila )}
=exp(—+ | C_I’)tr{exp(iZaT) PlAlexp(+il*a)}

= exp ( IZ:’}%J'dirtr{ |z > <.z exp(ftaT)P[:i‘] exp(il*a)}

=exp(;:|’)ﬁLJ'df:<;;p[A] 2> exp{i(T*4C*z))

=exp(! 7 |”)jded_vA(x,y)exp{Ei(xE+,1'1?)}=N(E)

-~
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' & .t e: 4 e SRR b
Hence P [A4] has the given {unctional as the characteristic funciion. We have therefore
proved the-following basic result:
Tueorest 3 Given the characteristic fuuction N (T) we can compute all the normal
ordered montents, whenever they cxist, by a power series cxpansion of N () the
neichbourbood of the orizin, The characteristic function N () always exists Tor cll
2 Z i ' 3 a . . 3 - i
complex valucs of £ and is bounded exp (L | T 19, Given a characteristic function vhich
sutisfies this requirement we can reconstruct the density matrix P by the formula

(6.i4) p[r;}]=jt'1-’:¢(:}!:><:]

with p z) defined as the distribution solution of the intearal equation

*Cry=N(Z)

(6.22) {djzrp{:)(fxp{f{::*-};

“We have the alternate formula

(6.17) P——,—'“-Ja“-fdu,ﬂo{:*l—‘ A R
A(FEE Ler—0)1z>< Ty

where the entire analytic function 4 (z,, z,) of two complex variables i1s the solution of the

intzgral equation

(6.23) Az, 20 = ,f; f Jagdnexp(—g =) NE M exp{=2@Ez+15))

7. THE CHARACTERISTIC FUNCTIONAL OF A GENERAL FIELD OF ILLUMINATION

In the previous section we have discussed the method of spzcifving the statistical
state of a mode-pure field in terms of the characteristic function & () which is more
general than the specification in terms of the higher order moments. We now wish to
generalize this to arbitrary optical wavefields. We shall start with the quantum theovy
rule [10] for computing the higher order coherence functions ;

Sl Y e Ry {V(}-g V()P P () e {xﬁ)} |

where F (x) is the annihilation part of the field

Vi) = S dg W (R

et
[+ 4
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We shall continue to uses thz convention that for the transverse vector field, we will usa the
label x to stand for the spacc coordinates and polarization labels but not the time
parameters.  Cf course for a transverse vector fisld, the mode functions ug (x) would be
transverse vector functions. We huave also scen that the coherence functions could be

rewritten in the form
% *
oAy e Xyidu o)) = z vy, s Uy, (x,) ug, () s g, (v,) X

by o
v %

By By tr {aﬁl . a*.;v P ﬂIl alg}

Definition of the characteristic functional

Given the quantities
1) ) .
tr {aﬁ; g P @y o aip} g HE P g A

we could construct the auxiliary quantities

2) g (@) = "7y T ot o
(7.2) g © = Dy o v Ly G oo G, u{ Gg weree g, 00 sl }

Il

e ¥ ¥ i
R {taore (8T @1” }
where

BO=/"7%0a, :B@Q=2¢a

9[\4

In terms of these dzfine the functional X (Z) by the construction

—_—

L=
N . i . ot
(7.3) X© = > @ =u{EQp 15 @1
wy=0 g

Ty « Eris - = . s
Wiecan write down the expression for B (J) in terms of a function T (X) defined by

|

79 =g Bl

in the form



162 ' E. C. G. SUDARSHAN»

R
If the sequence of numbers T, satisfy S | Ca]? < =
—
o
then we have, automatically,

(1.5) e = [ 120 dx < =

We shall restrict attention to such sequences Cz and such functions I (x). We may now
write the functional X ({) of the sequences { T } as a functional of the square integrable
function T (x) in the form

6 Nt =ulep{ifayrmrofrep{+ifdrtmrTn}]
This is the characteristic functional of the state [ 23 ] specified by the density matrix pP.

Properties of the characteristic functional ; Relation to colerence functions
p r

By virtue of the fact that { (x) is square integrable it is possible to show that the
functional N [ T (x) ] always exists. For this purpose we observe that

(7.7) WL =exp{ i [dx[ r@ V) + T v @ 1}

is a unitary opzrator-valued functional. We can deduce by the use of the commutation
relations

[V ;1 =5(x7)
that
(7.8) exp{ + ij-dxt (.r}VT(.\:)}exp{ fjdyt" (y)V(}’)}
=exp(+ 30T WIT()T

Hence the number-valued functicnal ¥ [ € (-) ]is a complex number of absolute value
bounded byvexp ( — L1 TI1°).
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‘If we define the complex number-valued functional
w[Z)]=tu{PW[T()]}
then
7.9) ©[C()] = exp(—FNCIEINIT()])

In general there is no guarantee that N [T (-)] can bz expanded in terms of
multiple integrals over multilinear forms in T (-). But if the functional is an analytic
functional, we may evaluate the various coherence functions as the cozficient functions in
this expansion. Jn any case we can formally write down

| L
" o ,
(7.10) N[C ()] = Z e j' dx, j dx, J' P, j dy, T ? (30,3 Yro))X

4, v=0 L Gilos ) EHO) e TR, 0

In the differential from this may be written

(7.11) [l Bty | e Xy Yy ,) =(— ekt 2

“Thus, if we are given the density matrix we can calculate the characteristic
functional N [T (-)]. The various order coherence functions, when they exist, can be
obtained from the “ power series” expansion of the functional in terms of multiple
jntegrals of multiple products of { and {*. But the characteristic function exists for all
T (-) with || T ]| < oo, whether the higher coherence functions exist or nct.

Reconstruction of the density matrix from the characieristic functional

‘We can now raise the question of whether the characteristic functional N [T (-)]
uniquely determines the statistical state of the system. Tor this purpose we consider a:
distribution over the unitary number-valued functionals

exp { i [ dv [V (x) T* (x) + % (x) T{x)] }

which maps them iato N[I (-], We could write this symbolically as a functional
integral :

@
.12) exp{ i J dx [¥ () T (9 + ¥* () T (9]} —>

= J [V ()] e ¥ ()] exp { ;'J de [V () T () + ¥* (%) C{x)]}

= N[T(-)]
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where * [¥ (- )] is the natural measure in the space of complex functions ¥ (-). Then
we could write down the functional integral representaticn for the deasity matrix in the
form

(7.13) p=[aweler@Ire)><p )l

where the (state) vector-valued functional 1% (-) > is defined by the simultaneous
eigenstate of th= annihilation operators according to the equation

faxrr@reiver>=larme@ive s

In the above equations we have used the diagonal representation for the field density

matrix [18].

The method of characteristic functicnals that we have outlined here realizes its
proper role when one considers the equations of motion for higher order coherence
functions ; we hope to return to this topic in another paper.

8. MIXTURES OF MODE-PURE ILLUMINATIONS

In an earlier section we have discussed mode-pure fields for which the various
coherence functions factorize, In this case the problem can essentially be reduced to the
study of the density martrix of a single oscillator. But in most cases the illumination
will not be mode-pure. In the study of the second order coherence functions we saw that
they form a convex case and the generators had coherence functions for which the
(equal-time) reduced coherencs functions were unimodular, This theorem does not have a
direct extension to higher order coherence functions in general. For mode-pure fields ths
theorem is trivial. In this section we study the mode-mixtures which belong 1o the convex
cone gencrated by fields almost all whose coherence functions faciorize ; and the necessary
and sufficient condition for a fizld to bzlong to this convex cone. As a corollary we will
bz able to demoastrate that not all fields of illumination can be so constructed.

Cohzrence functions as infinite partitioned matrices

As a preliminary to the study of these questions we note that an infinite
partitioned matrix I" may bz coastructed out of the coherence functions in which the
(g, )™ blocik of the partition consists of the coherence function

S I ELRLL]

e B s Xy 3 Yyesews¥)) wWith the “coordinates ™ {x ; y}

would then be

acting as continuous matsix indices : sum over repeated matrix indices
hermitian and .

replaced by integration over these continvous indices. This matrix is
= 1. Since this matrix is

nonnegative. The first principal bleck consists of "™
hermitian and

hermititn 2nd nonnegative, every priocipal submatrix of it must also be
nonnegative. All those properties are preserved under the operation of homogeneous
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.. ; .
convex combinations, IfTus, 1 £ & < N are cdmissible cohercnce matrices, then the
homogecncous convex combinations

=
(8.1) F=>' Ax T, ? = 1; =10
' k
are also admissible coherence matrices. The external elements of this homogeneous
convex sct are pure states :
r=vul

which statisfy
M=r

where % is an infinite column vector with appropriate partitions.

It is interestinz to note that the characteristic functionals N [T ()] also
constitute a homogenesous convex set. These functionals have also the property of being
closed under homogeneous convex [6] combinations

(8.2) N=>tNw, > =1 k=20
k —d

The extremal elements correspond to pure states whose characteristic functions satisfy a
convolution property (which we shall not discuss here ! ). Define a column vector z [T (-) ]
whose nth block entry 0 < # < oo is given by the n** Kronecker power of T (- ) multiplied
by (i*/n!). We may now write

(8.3) N = :T | B

(provided the functional ¥ [  (-) ] has a power series expansion) so that the two convex
sets are simply related.

From the last expression for N[ {(-) Jinterms of z [ T (-) ] for those cases in
which N[ T (-) ] has a power series expunsion we may read off the structure of the
characteristic functional of a mode-pure ficld. In this case the coherence functional of
order ( g, v ) is the product of the constant g'#, ») by u factors of u* (- ) and y factors of
u (-). The multiplication by “Tandz provides u factors of { and v factors of {T* as well

ptiv :
as a factor i [r!v!. Heonce we finally obtain

5 gyl e - Ty .
B4 N[Z()]= > &80 [J dx 0% (x) u(x) ] Ud}-.-_ (¥) u* (x) ]*‘
— u! v
4,»=0

; plHT G e

o o (w*)" wh

. ﬂ_‘dy utv!
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whoere

(8.3) w = J dx TF(x)u(x).

It thus reduces to a function of the quantity © . While the above derivation assumed that
N [T (-)])hada power serizs expansion (he result that N [ Z(-) ] is a fuuction of w
above is true for all the genera! mode pure fields.

Properties of mixtures of inode-pire fields . The auxillary two-peini function

For a generzl field which is a finite combination of moede-pure fields the charact-
eristic functicnal would be a homogeneons convex combination of functions of one variable.
The question we would like to ask is if it would be possible to £nd a ssquepce of ortho-
gonal modes, & = 1, 2, ...... such that

N N
NIT(O)]l= & AN(o); 20 2 =1,
k K
Let us assume that we are considering such a state which is a mixture of mode-

pure fields. Then the coherence functions of order (&, v ) could be written in the form :

ol

(3.6) TP (x, omus yi o) = 2 A Do, {5 i Xy 3 Fa i 7))

L% :

= 2, A gaale, T () () ue (1)) o ()

By assumption. the modes #x are orthonormal.  For the ¢ = » coherence function we have
the eigenvector decomposition
Plxiy)= > veh* WA ()

where

Yo = A gaotur’ [dxrr A ® = aw.
S {x) = e (x) oty {xg)
Let us now construct the function
(8.7) E.(n,E) = [a’ Xy ,Jd X fi* (X pveXp) feol %, e Xp s

Then we can easily see that

(3.8) Ec(n&8)=uw(n)u* (&)



Quantum Theory of Partial Coherence ' 167

Characterization of mixtures in terms of the auxiliary two-peliit function

We have seen above that if a field is composed of the mixture of a set of mode-
pure fizlds with orthonormal mode functions the auxilary two point functions Ex (&, 1)
are of rank one (that is, they have only one eigenvector whose eigenvalue is nonzero).
The question is whether this is also a suficient condition.  We shall sec below that it is

also suflicient.
Let us consider the complete orihnormal set of functions v (£) of one variable
which are eigenfunctions of £ (1, £ ) so that

(8.9) jda Ee (0, E) ttex (E) = €x () i (0) 2 e (r) = O

Jd Eun* (2) e (E1 = bus

E uk (E) us® (M) = 5 (£. 7).

r

Because of the normalization of fi we have ¥ eq (#) = 1. Define the coefficient functions
Bek (X5, ... Xp) BY '

,ﬁi e .\"‘u) = o Mk (E) o (x'n wee -‘:#]
r

so that
e (Xg 00 Xp) = J-d E tirk (E) i (E, Xy eoe Xp).

Then, the different functions /i, A« are orthogonul when r # s since

j dx, ... \ d xp hae® (g oo xp) ok (g, o Xp)

= J(!’EJ d M (E) ug™ (1) \ dx i J d Xu k™ (E, Xy ea Xp) fi (0, Xy, co0 Xp)

o

- J dE jtf T b ('E} wi® (1) Ex (11, E) = e (r) 8es

Hence for all the values r for which e, (r) = 0, the coefficient functions Ax (¥,  Xgz)
vanish : while for all other values of r the hu (x,, .. xg) for fixed &k constitute an
orthogonal set (which is in general not complete). For the special case of only a single
nonvanishing eigenvalue for FEy (7, £} that eigenvalue must be unity. Denoting the
corresponding eigenfunction by ux (£) we have all the coefficient functions /ir (X, ... Xu)
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vanishing except the onz corresponding to u; (£). We may then write the simple
factorization :

JTr (&, Xg0 oae 'TF) = 1 (E) Fix (s, - x‘“]-

But the function fj is symmetric in its g argumsents and is normalized. Hence we have
the explicit expression

S (g e X)) = 20 (x) e i ()

This l=ads finally to the decompesition of the coherencs function

I8 (x;y) = Z Yo (X)) et (xp) i (3y) oot (V)

By virtue of the orthogonality relation for the eigenvector fx (x) of " (x; y)
which states

s

Jdvre s (0= e
we have, in the present case
[Jeew@u@ ] -a,

so that the different mode functions ui (E) are orthonormal. Hence we have proved the
following result :

The necessary and sufficient condition for the ccherence function T (x; y) of
order (u, ¢) be expressible as a nonnegative linear combinution of coherence functions of

order (z, p) for mode-pure fields is that if we write the eigenvector decomposition of
I’ (x; ») in the form

Fxi = vef* (9 e yaz 0

then the auvxiliary functions
J‘ dx, ... ‘- n’_\‘p S s x,) [ (1 X Xgl = Ec(1; &)

must be of the form

(8.8) Ec (M &) = u (M w* (&)
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When this condition is satisfied one has
(8.9) Frilx,, - x#) = U (%) oo i (x#)
with an orthonormal set of mode functions . (£).

Some theorems on mixtures of mode-pure illuminations

The above result can be used to lead us to a very remarkable property of fields
of illuminution which have coherence functions of any order (g, #), # = 2, that can be
expressed as a nonnegative linear combination of mode pure fields. For recogaizing this
property let us define the annihilation and creation operators

(8.10) . a, = [de 4@ 2 @)

ol =)ae 4T @ @

which satisfy

.i.
Lo o] =20

and where ux (£) are mode functions associated with the (u, u) order coherence function
of this class of fields of illumination. Then we have by virtue of the orthonormality of the
ue (E) the result

+ Ykif&lzaa,_,:g’_ ﬂﬁx“':ﬁ sl
(8.11) tr{aal , pfﬂ;l... aﬁﬂ}z{ p = b,

0 otherwise.

We note, in passing, that
(8.12) ve =t {af p (aj)*‘}

Of course for many values of k, vi vanishes but not all yy can vanish unless the
(g, ) order coherence function itself vanishes identically. By choosing «, = g,
@y = Py oer 2y = Bu we can see that we must have identically for every eigenvector P of

the density matrix P the relation

@
1

{(m—}'"%i’ alza,...za#=k

a, e dy P =
# 0 otherwise

Now consider the matrix

Wy
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This must vanish, by virtuz of the symmctry in the indices and the above result unless all
the indices are the same so that

e (E) (@de P50y = a0y == k
AEY ay ol P =
T fu 0 ' otherwise

Hence we have

AE) A@x) e A (x) = E e (£t () voennn i (X)) (a)® 2w

It follows that provided max {4, ») = u

N

L NP JES S ‘?C’ R ¥ Gl e, e (X)) 4 () ot (p)
where
(8.13) v = r { (a)? p (aJJ" }

The general solutions to the deasity matrix P and the eigenvectors ¥ of the density matrix
P are given by

. Y‘ |
P= >—-—' YePei: Pu= 2 k(1) Yue Vil

k r
(8.14) PYye = N{ Fko (akf) + Pk (Af} }

where the Fuo are arbitrary operator-valued functions of the creation operator for the
mods k. We have thus proved the following result.

TrnsoreM 4. If the coherence function of order (g, g) coincides with the positive linear
sum of thz (factorizable) coherence functions of a number of mode-pure fields (for 10
then all the coherence functions of orders ( 4, » ) also factorize in this fashion whenever
max (g, v) = ¢ = 2 The density matrix of such a system is the positive linear combi-
nation of density matrices each of which has eigenvectors which correspond to states
hiving components with arbitrary excitations in a distinguished mode 4 and a componeng
with less that g photons in all the modes together.

The method of proof breaks down for the case of 4 = 1; this case has to be
dealt with separately,

In the above discussion we have considered the coherence function of order
(@, ). Butwe know that apy principal submatrix of the infinite partitioned matrix T is
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ermitian and nonnesative, Further, for a density matrix which is a mixture of modepure
o ) s
density matrices we can make a decomposition

e

(8.15) T (x;)) = [ T® (x;9) | = 2V E () A (x)

where Fis a column matrix || F || whose elements are the functions fi (¥, -~ _1’#} with

S 1 een¥y) = €y (7)) et ()

where ¢, are constants. If we now construct the auxiliary function (1°x 1 matrix)

E.(E)= _>_‘ j dx, e j ﬂ',\‘# 5 0E x50 _\‘Iu_)f['q, G, e xé)
u :

we get

(8.16) Ec (0, &) = w () w* (£) E L eyl
I

Conversely we may show that if Ey (7, £) has only one vector corresponding to a monzero
eigenvalue then fx (&, x,, -oe xﬂ) should factorize, To show this we define

fur G ere ) = {48 e (€1 (B X e %)

Then we can show that as long as E; (7, £) has only one eigenvector wuy (§) having
nonzero eigenvalue that all the fi, (x,, ... x#) except the one corresponding to

ty (E) = uk (E) vanish ; hence we may write
fu (B, %oy %) = fi (3 = %,) i (E)
and hence
(8.17) Je (xpy aen x#] = Ui (x,) «ee ik (x#).
Thus the necessary and sufficient condition for an expression for || TF(x;y) !l to be a

positive linear combination of the corresponding set of coherence matrices is that every
Ex (7 £) have only one eigenvector ux (&) having a nonzero eigenvalue.

Provided max (g, ») = 2 we can proceed further to show that

.18 || T%" " (s || = E Yi |
k

r L
o e e T (06 (1‘#) U (1)) oo 11 () H

with
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for max (g', »") = min (g, »). To prove this result we can proceed in exactly the same
fashion as in the previous case of (g, jz) order cohecrence. We have thus proved the

following result :

CoroLLARY 4.1 The results of theorem (4) continue to be true given that E (7, £) for
any principal minor || ' ™| of the matrix of coherence functions has a single eigenvector
with nonzero eizenvalues with the understanding that :

max (p', v') = max (g, v) = 2.

CoroLLARY 4.2 These results could be transcribed into the language of characteristic
functionals. Theorem (4) then asserts that if the coherence function of order {g, z)is a
positive linzar sum of the mode-pure ccherence functions of order (g, g) then, the
characteristic functional may be written in the form :

e ye M [0+ PIT()]
e v + P [0]

(8.19) N[T()]=
where P[{ (-)]1is a polynomial functional of C (x) of degree less than g.

9 ) ENUMERA‘T[ON 0?‘ EXCITED MODES FROM SECOND ORDER COHERENCE FUNCTION

The study of mode-mixed ficlds of illumination in the previous section concen-
trated on a special class of fields which could be viewed essentially as positive linear sums
of mode-pure fizlds (except for certain component states with less than g photons).
This required a special property of the coherence functions; we have found that this
property could be expressed in terms of certain auxilizry functions £¢ (9, £). For a
general optical field, these constraints on the higher coherence function are not satizfied.
However when one considers the coherence function of order (1, 1) these questions become
degenerate : for this coherence function we always have the decomposition

©.1) T D (x; y) = E e u* () ¢ ()

and hence it is already in the form of a positive linear sum of factorized contributions.
However a careful examination of the proof of theorem (4) show that it does nos hold in
this case; we cannot conclude that all fields of illumination have positive linear

combination of mode-pure density matrices
Second order cokerence functions and unexcited meodes
We can however see that the decomposition (9.1) can be trauscribed into

(9.2) o w{aral} = vy

which leads to the result that if yx = 0 for some member v, (x) of the complete set of

mode functions then
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(9.3) | a, Pal =0

sioce the trace of this nonnegative matrix cannot vanish unless the raatrix itself vanishes.
If ¥ is any eigenvector of P it follows that

a¥=0; y,=0.

Hence the annihilation operator for those modes for which Yy« = 0 (which are therefore
orthogonal to T" (x, y) considered as a function of y) will annihilate the density matrix

If we now consider

VE)a P = > u, () a, a, P

[+

=zrr¢(£’.) a, a. P Yy %0
o

so that all coherence functions can be written in the form :

(94) T¥ 7 (x, e Xy Yoy e 3,)

= >y (5D g Ux,) Uy () ity (37) 8% e B)

o

@y e @ Bi B,

‘YGL,‘-.. pap, ‘)‘ﬁl,u- Yﬁv + 0
where
By ¥y [, . — . T T
(95) g (:; s ﬁ) tr {Gal... (Jm# p (Jﬁl. aue {I’ﬁ”} .

Thus only those modes can be excited in the higher order coherence functions which are
spanned by these modes which are excited in the second order coherence function, In
particular if only a finite number of modes are excited in the second order coherence
function, then zall the coherence functions of higher order can be expanded in terms of
suitable products (including cross products) of these mode functions, We have therefore
proved the foilewing result :

THeOREM 5. Every second order coherence function can be expanded in the form

T(ED) = > Yo m* (€) m (D)
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with the w (&) constituting a coimplete set of functions. Given an arbitrary coherencs

function T** ¥ (x,, ... Xus Yoo 3,) we will have
(9.6) j dE aw(E) THE ~ ... Xyi i y,) #0

J, 27 oE (g T (o Nyi T Y e ¥,) # 0

only if we have

o) [ag v ror gm0 :

Th's resuit holds even for the coherence functions I'® ¥ (; p) and T ¢ (y: ),
t is plausible since the second moment is the aralogue of the mean squars of a randem
variable ; its vanishing requires that with measure unity the random variable must have
value zero and hence all the moments must vanish. Even though we are dealing with
quantum mechanical normal ordered expectation values, this result continues to be valid.

Structure of the characteristic fuinctional

We cun express the content of the theorem (5) in terms of properties of
characteristic functionals. We have then the following statement :

CoroLLARY 5.1 If the term bilinear in T (x) and T* (x) in the expansion of the
characteristic functional N [ (+)] depends only a projection T, (x) of the square inte-
grable function I (x) onto a subspace of such functicns, then the funciional N [T (-)] is
independent of the orthogonal projection and is thus a functional of {, (x) only.
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