Lecture Notes in Physics

Edited by J. Ehlers, München, K. Hepp, Zürich, and H. A. Weidenmüller, Heidelberg
Managing Editor: W. Beiglböck, Heidelberg

Foundations of Quantum Mechanics and Ordered Linear Spaces

Advanced Study Institute
Marburg 1973
Edited by A. Hartkämper and H. Neumann
Fachbereich für Physik der Universität Marburg,
Marburg/BRD
Interreversibility and Dynamical Maps of Statistical Operators

Vittorio Gorini* and E.G.G. Sudarshan
Department of Physics, Center for Particle Theory, the University of Texas, Austin, Texas, 78712

1. Introduction

Let \mathbb{C} denote the space generated by the states of a quantum mechanical system. We wish to discuss some problems and results, mainly in connection with N-level systems, regarding the structure of the convex set of linear maps $\mathbb{C} \to \mathbb{C}$ which map states to states. In the conventional Hilbert space formulation of quantum theory, \mathbb{C} is taken to be the Banach space $T(K)$ of trace-class (t.c.) operators acting on the Hilbert space K of the system, under the t.c. norm $\|I\cdot Tr(\rho^2)\|$.

The states of the system are the positive elements of $T(K)$, with trace 1 (statistical operators). They form a convex set $K(K)$ whose algebraic span is $T(K)$. Linear maps $f:T(K)\to T(K)$ such that $f(K)K\subseteq \bigcup \lambda K(K)$ are studied in relation with the measuring process and called operations [13,12,6]. Operations which map $K(K)$ into itself are called non-selective [18]. Our interest is precisely in the convex set $F(K)$ of non-selective operations. However, our motivation for studying these maps is not connected with the charge undergone by an ensemble as a consequence of a measurement, but rather with the description of the dynamical evolution of a system undergoing an irreversible process, as we shall presently explain briefly. For this reason, we prefer to call the elements of $F(K)$ dynamical maps. (**) A more detailed discussion, together with the proofs of the results will appear in a forthcoming paper [10].

The program of our investigation is twofold:

i) find out whether $F(K)$ has sufficiently many extreme elements to make it possible to approximate in a suitable topology every dynamical map by means of a finite convex combination of extreme (pure) dynamical maps, in the same way that any state can be approximated by a finite convex combination of extreme (pure) states;

ii) possibly classify all the extreme dynamical maps.

We briefly touch upon the first question and then state and discuss a theorem which, as a particular case, gives a classification of the extreme dynamical maps of a two-level system and clarifies their geometrical structure and their symmetry properties. This leads us to a conjecture as to how the result might be generalized to N-level systems, for arbitrary N. Störmer [26] has computed the normalized extreme positive linear maps of the 2×2 complex matrices. By taking adjoints, his result is equivalent to our classification above. However, we give a more general theorem. In addition, Störmer's proof does not allow for a straightforward geometrical interpretation and does not display the symmetry properties of the extreme maps, thus giving little hint as to how the problem could be solved for the $N \times N$ matrices.

The physical motivation for studying dynamical maps is discussed at length in [10]. Here it is sufficient to observe that the dynamical evolution of a quantum system Σ is described by a one-parameter family $t \mapsto A(t)$, $t>0$, of dynamical maps which is determined by the Hamiltonian H of Σ and by the nature and degree of coupling of Σ to its surroundings. Only in the limiting case when Σ can be treated as isolated is the dynamics Hamiltonian and reversible, thus having the form $A(t)=\exp(-iHt)$, where $H=[H,...]$ is the Liouville-von Neumann operator. On the other hand, in general, the interaction of the system with its surroundings plays a definite role in producing an element of irreversibility in the dynamical evolution, which ceases to be Hamiltonian. The essential difference between Hamiltonian and non-Hamiltonian evolution lies in the fact that the latter brings about a variation in time of the "purity" of the state, which depends on the particular dynamics and on the initial condition. For example, the state of a system which is coupled to a thermal reservoir, eventually ends up in the equilibrium canonical distribution, independently of the original preparation.

Models of irreversible non-Hamiltonian evolutions, based on various types of "master equations" and in which the coupling of the system to the surroundings is treated either stochastically or mechanically, have been considered by several authors in general contexts and in specific physical situations [7,30,31,11,20,2,29, 23,21,13,8]. Some of these models are discussed in [10]. Here we only make a remark which we deem important. Concerning macroscopic systems which are adiabatically isolated, the hope that their macroscopic dynamics and in particular the features of the approach to equilibrium of the macroscopic observables can be explained starting from the Liouville-von Neumann equation which describes the detailed microscopic
dynamics in the approximation of complete isolation is certainly justified, and much progress has recently been made in this direction [19,32]. However, as regards the problem of irreversibility, the small residual interaction of the system with the surroundings is still important in bringing about a progressive decrease of the purity of the statistical operator and thus a progressive loss of memory of the initial state [1,21]. In this connection, non-hamiltonian dynamics is again important.

We hope that a knowledge of the extreme dynamical maps and their possible physical interpretation might help to clarify the structure of various dynamical evolutions described by a one-parameter family of dynamical maps \(A(t) = (t) \) in terms of extreme maps \(A_i(t) \), provided there are enough extreme maps \(A_i(t) \) that decompositions of this type exist. For example, it is sometimes possible [22] to analyze the dynamics of an open system as \(A(t) = A_n \exp(-i \mathcal{H}_n t) \) where the coefficients \(A_n \) of the convex combination do not depend on time and \(\mathcal{H}_n \) is a sequence of Liouville-von Neumann operators (it can be seen that \(\exp(-i \mathcal{H}_n t) \) is extreme since it maps pure states to pure states). Another example is provided by models of dynamical semigroups \(t \mapsto A(t) \) induced by stochastic processes on topological groups, for which a natural convex decomposition in terms of extreme maps is given and which seem to find application in the analysis of master equations of laser theory [17].

2. Notations

\(M(N) = \text{unitary algebra of the } \mathbb{N} \times \mathbb{N} \text{ complex matrices with inner product } (a,b) = Tr(a^*b). \)

\(\text{co } Y = \text{convex hull of } Y. \)

\(\text{extX} = \text{set of the extreme elements of the convex set } X. \)

\(K(N) = \{ |w| = 1, w \in M(N); \forall \theta \in \Theta, Tr(w) = 1 \} = \text{set of the } \mathbb{N} \times \mathbb{N} \text{ density matrices}. \)

\((B,T) : \mathbb{R}^N \to \mathbb{R}^N \) denotes an affine map \(\mathbb{R}^N = \mathbb{R}^N. \)

\(O(n) = \text{group of the orthogonal } \mathbb{N} \times \mathbb{N} \text{ real matrices}. \)

\(S_0(n) = \{ B \in O(n); \det B = 1 \}. \)

\(SU(n) = \text{group of the unitary } \mathbb{N} \times \mathbb{N} \text{ complex matrices with determinant } 1. \)

\(Ad: u \mapsto Ad_u, u \in SU(n), \) denotes the adjoint representation of \(SU(n). \)

\(B_n = \text{closed unit ball in } \mathbb{R}^N. \)

\(S \bigcap \mathbb{R}^N = \text{boundary of } B_n. \)

\(\text{diag} (a_1, \ldots, a_n) = \text{nxn diagonal matrix with diagonal elements } a_1, \ldots, a_n. \)

\(E^* = \text{topological dual of the topological vector space } E. \)

3. Extreme Dynamical Maps

Let \(\mathcal{A} \) be the \(C^* \)-algebra generated by the bounded observables of a quantum mechanical system \(\Sigma \) and assume that \(\mathcal{A} \) has an identity. Then the set \(K \) of states on \(\mathcal{A} \) is a C*-algebra (compact and its algebraic span is \(\mathcal{A}^* \) [1]). Let \(\phi \) be the point-open topology [16] on the space \(\mathcal{J} \) of linear maps \(\mathcal{A} \to \mathcal{A}^* \), where \(\mathcal{A}^* \) is taken in the C*-algebra (C*)-topology. Define the set \(F \) of the (mathematical) dynamical maps of \(\Sigma \) as \(F = \{ A \mapsto \Phi^A; A(0) \in K \} \). Then the following theorem results as a corollary of the Krein-Milman theorem [24] and of a theorem of Kadison [16].

Theorem 3.1. \(\text{co} \text{extr } F \) is \(\sigma \)-dense in \(F. \)

If the physical states of \(\Sigma \) were to be represented by the totality of the elements of \(K \), the above theorem would give a positive answer to the question whether there are "sufficiently many" extreme dynamical maps. On the other hand, in the conventional formulation of quantum theory which applies to finitely extended systems and to which our philosophy about the explanation of irreversibility conforms, one identifies \(\mathcal{A} \) to \(E \), the C*-algebra of bounded operators on a separable Hilbert space \(H \) and assumes the only physical states to be the normal ones. Via the correspondence \(\omega(a) = Tr(\omega a) \), these are identified to the set \(K(H) \) of statistical operators, which spans \(T(H) \). Since \(T(H) \) is the dual of the C*-algebra of completely continuous operators [25] which does not have an identity, we cannot apply theorem 3.1 to \(F(H) \) and, to our knowledge, the problem whether \(F(H) \) has "sufficiently many" extreme elements is open. However, because of the properties of statistical operators ans since the elements of \(F(H) \) are bounded, we conjecture that an element of \(F(H) \) is the limit of a norm Cauchy sequence of elements of \(\text{co} \text{extr } F(H) \). We also remark that an element of \(F(H) \) which maps pure states to pure states is extreme.

Now we consider an \(N \)-level system \(\Sigma \) whose Hilbert space (respectively, whose C*-algebra of observables) is isomorphic to \(\mathcal{O}^N \) (respectively, to \(M(N) \)). Let \(\{ v_\mu \}_{\mu = 1}^{N^2 - 1} \) be a complete orthogonal set (c.o.s.) for \(M(N) \) with the normalization \(\langle v_\mu, v_\nu \rangle = (1/N) \delta_{\mu,\nu} \). Choose the \(v_\mu \)s to be hermitian and, in particular, \(v_0 = 1/\sqrt{N^2}. \)

The states of \(\Sigma \) are the density matrices, forming the set \(K(N) \). Expand a density matrix in terms of the \(v_\mu \)s:

\[
\rho = \frac{1}{N} \mathbb{1} + \sum_{\mu = 1}^{N^2 - 1} a_\mu v_\mu.
\]

The map \(t \mapsto \{ a_1, \ldots, a_{N^2 - 1} \} = \alpha \) is a bijection of \(K(N) \) onto a compact and convex neighbourhood of the origin in \(\mathbb{R}^{N^2 - 1}. \) We identify hence a density matrix \(\omega \) with the corresponding vector \(\alpha = (\omega) \in \mathcal{J}(K(N)) = \mathcal{J}(M(N)). \) Since \(Tr(\omega)\), we have
Let \(\{ A_{\mu} \}_{\mu} \) be the matrix representing an element \(A \) of \(G(N) \) with respect to the c.o.s. \(\{ v_i \} \). Then \(A_{\mu} A_{ij}^* = a \delta_{\mu, i}^j \) and \(A_{\mu} A_{ij} = a \delta_{\mu, i}^j \). Writing \(A = (A_{\mu}) \), \(a = \sum a_{\mu} \), and \(A = a \sum a_{\mu} \), we have \(a_{\mu} = \sum a_{\mu} \delta_{\mu, i}^j \) \((i=1, \ldots, N^2-1) \). Hence we can identify \(G(N) \) with the set of affine maps of \(\mathbb{R}^{N^2} \) into itself which map \(\mathbb{R}^{N^2} \) into itself. The map \(g : A \rightarrow (b_{\mu} A_{\mu} b_{\mu}) \) is a bijection of \(G(N) \) onto a compact and convex neighbourhood of the origin in \(\mathbb{R}^{N^2} \), and we henceforth identify \(A \) with the corresponding set of matrix elements \(\{ b_{\mu}, A_{\mu} \} \) of \(g(G(N)) \) of \(F(N) \). The Krein-Milman theorem ensures that \(F(N) = \text{co}(\text{extr} F(N)) \). We refer the reader to [1] for the details of the extremal elements of \(F(N) \).

Consider first the simplest case \(N=2 \). Then \(L(2) = \mathbb{R}^2 \) and we look for the extreme elements of the set \(F(2) = \mathbb{R}^3 \) of affine maps \(\mathbb{R}^3 \) which map \(\mathbb{R}^2 \) into itself or, more generally, for the extreme elements of the set \(D_n \) of affine maps \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) which map \(\mathbb{R}^n \) onto itself.

Let \(D_n = \left\{ (\mathbb{S}, T) \mid (\mathbb{S}, T) = (\mathbb{Q}, \Lambda) (\mathbb{O}, \Lambda) (\mathbb{O}, Q_2) \right\} \)

\[\mathbb{O} = (Q_{1,1}, Q_{1,2}, Q_{1,3}, Q_{2,1}, Q_{2,2}, Q_{2,3}; Q_1, Q_2 \in O(3)); \]

\[A_1 = \frac{Q_{1,1}}{Q_{2,1}}, A_2 = \frac{Q_{1,2}}{Q_{2,2}}, A_3 = \frac{Q_{1,3}}{Q_{2,3}}. \]

\[\Lambda = \text{diag} \{ a_{\mu, \nu} \} \]

\[a_{\mu, \nu} = \frac{\epsilon_{\mu, \nu} (1 - \omega^2)}{\sum_{j=1}^{n} \epsilon_{j, j} \omega_j}; \]

\[0 \leq \omega_1 \leq 0 \leq \omega_2 \leq \omega_n \leq 1, \]

\[0 \leq \epsilon_{\mu, \nu} \leq 1, \]

\[\sum_{\mu=1}^{n} \epsilon_{\mu, \nu} = 1. \]

The boundary of \(D_n \) is obtained by taking \(\omega_1 = 1 \); \(\text{extr} D_n \) is obtained by taking \(\omega_1 = 1 = \omega_2 = \cdots = \omega_n \) and \(\epsilon_{1,1} > 0 \). Theorem 3.2

a) Using the polar decomposition of a real matrix, \(B = \Sigma Q \), \(\Sigma \) symmetric and positive, \(Q \) orthogonal, we can split \((\mathbb{S}, T) \) as a product \((\mathbb{Q}, Q_1) (\mathbb{Q}, Q_2) \), where \(\Lambda = \text{diag} \{ \lambda_1, \lambda_2, \ldots, \lambda_n \} \). \(\Sigma, \mathbb{Q} \) maps \(\mathbb{R}^n \) onto an ellipsoid \(\mathbb{E} \) with axes of length \(\lambda_1, \lambda_2, \ldots, \lambda_n \) and whose center is \(\mathbb{O} \).

b) \(\text{extr} D_n \) contains in particular the elements of \(D_n \) which map \(\mathbb{O} \) into itself. There are two types of such maps: those of the form \((\mathbb{O}, Q) \), \(Q \in O(n) \), and those which map \(\mathbb{R}^n \) onto a point of \(\mathbb{O}^n \).

c) In the physical case \(n=3 \), \((\mathbb{O}, Q) \) is induced by a unitary transformation on \(\mathbb{C}^2 \) if \(Q \in SU(3) \), by an antilinear unitary transformation if \(Q \in O(3) \). The relation among the elements of \(D_n \) specified by \((\mathbb{O}, T) \rightarrow (\mathbb{O}, T') \) iff \(\exists Q \in O(n) \) such that \((\mathbb{O}, T') \rightarrow (\mathbb{O}, Q) (\mathbb{O}, T) (\mathbb{O}, Q^{-1}) \) is an equivalence relation and \((\mathbb{O}, T) \in \text{extr} D_n \) iff the whole equivalence class of \((\mathbb{O}, T) \) is contained in \(\text{extr} D_n \).

e) The geometrical meaning of the parameters \(\omega_1 \) is clear from the relation \(\epsilon_{1,1} = \lambda_1 \lambda_1 \).

f) As to the parameters of the \(\epsilon_{1,1} \), take \(\rho = 1 \) and \(\alpha < 1 \). Then \(E \cap \mathbb{S}_n = \{ \mathbb{O} \} \).

g) \(s, \alpha \) are parameters of convex combinations. With the notation \((\mathbb{O}, T) = (s, T), (\mathbb{O}, T') = (1-s, T') \) and \(\alpha = (s, T) = s \), we note that \((1-s, T') = (1-s, T', \mathbb{O}) \) and we have \(\alpha = (s, T) = s (1-s, T', \mathbb{O}) \) and we note that \((s, T) \) maps \(\mathbb{R}^n \) onto \(\mathbb{O}^n \).

h) Take \(\omega = 1 \) and \(\epsilon_{1,1} > 0 \). Then, if \(\omega > 1 \) we have \(E \cap \mathbb{S}_n = (\mathbb{O}, T) \), where \(\mathbb{O} = (\mathbb{O}, T) \). If \(\omega = 1 \) and \(s \) is a circle. If \(\omega = 1 \) and \(s \) is a circle, it is a three-dimensional sphere, and so on. If \(\omega = 1 \) and \(\epsilon > 0 \), \(E \cap \mathbb{S}_n \) is an \((n-1) \)-dimensional sphere and the map is extreme (as well as when \(\omega = 1 \), which gives the identity map). The remaining extreme maps are obtained in the limit case \(\omega = 1 \), for which the \((n-1) \)-dimensional sphere \(E \cap \mathbb{S}_n \) degenerates to the point \((0, 0, \ldots, 0) = 0 \).

i) Observe that the extreme elements have a high symmetry. Precisely, if \((\mathbb{O}, T) \) is extreme, then \(\exists C \in O(n) \) and a subgroup of \(O(n) \), say \(T \), isomorphic to \(O(n-1) \), such that \(QTC = Q' \). However, this condition is not sufficient for \((\mathbb{O}, T) \) to be extreme, as the example \(s = 1 \), \(\omega = 0 \) shows.

j) Observe that an element of the form \((\mathbb{O}, T) \) is extreme iff \(T \in O(n) \) (in the physi-
case \(n > 3 \), iff it is induced by either a unitary or an antilinear unitary map on \(C^1 \).

Remarks on the case \(n > 2 \).

a) If \(n > 2 \), \(L(N) \) is a proper subset of \(B_{N^{2-1}} \), and the problem of finding \(\text{ext} \mathcal{F}(N) \) is more complicated. A partial classification is provided by theorem 3.3 below [27,4]. \(L(N) \) is no more mapped onto itself by arbitrary rotations, but by those rotations which are the elements of the adjoint representation of \(SU(N) \). Such rotations are induced by transformations \(w = u \hat{w} u^* \), \(u \) unitary, on the density matrices. Antilinear unitary transformations induce rotations if \(N = 4k \), \(4k-1 \), reflections if \(N = 4k-2 \), \(4k-1 \) (\(k = 1, 2, 3, \ldots \)). All the above maps are extreme because they map pure states to pure states (and we conjecture that they are the only extreme maps among those for which \((1/N) \mathbb{1}_N \) is a fixed point). For the same reason, also the maps which map \(L(N) \) onto a given pure state are extreme.

b) We guess that the extreme elements of \(F(N) \) have a high symmetry also in the case \(n > 2 \). To be precise, we make the following Conjecture. Let \(V(N) \) denote the subgroup of \(O(N^2-1) \) generated by \(\text{Ad} \mathcal{S}U(N) \) \(U_A \), where \(A \) is a given dynamical map induced by an antilinear unitary transformation. Then, if \(\mathcal{B}(T) \) is extreme, \(\mathcal{C} \in V(N) \) and a subgroup of \(V(N) \), \(r \) say, isomorphic to the subgroup generated by \(\text{Ad} \mathcal{S}U(N-1) \) \(U_A \) such that \(q r \mathcal{C} = \mathcal{C} q^{-1} \mathcal{C} r^{-1} \) and \(q \mathcal{B} = \mathcal{B} q \), \(V \in r \).

c) Let \(1_n \) denote the identity map \(M(n) \to M(n) \). By definition [27,3] an element \(A \) of \(G(N) \) is completely positive iff, for all positive integers \(n \), \(A \otimes 1_n \) is a positive map of \(M(n) \otimes M(n) \) into itself.

Theorem 3.3 [27,4] An element \(A \) of \(G(N) \) is extreme among the completely positive maps iff \(\{ A \otimes 1_n, I_n \} \) \(\mathcal{N} \) is a linearly independent set in \(M(N) \).

Remark. The elements of \(G(N) \) which are induced by antilinear unitary transformations on \(C^1 \) are not completely positive. To our knowledge, it is an open question whether \(\mathcal{O}(N) \) of \(G(N) \), if any, are not completely positive.
27. Störmer, E.: Positive Linear Maps of C*-Algebras, lectures at this Institute.