Mon. Not. R. astr. Sec. (1976) 175, 105-116.

TACHYONS AND COSMOLOGY

J. V. Narlikar
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 oos, India

and E. C. G. Sudarshan

Center for Particle Theory, Department of Physics, University of Texas at Austin,
Austin, Texas 78712, USA

(Received 1975 October 13)

SUMMARY

The propagation of tachyons in an expanding universe is discussed. It is shown
that a primordial tachyon in the big-bang universe cannot survive unless it
had very large energy initially. In an indefinitely expanding universe the
tachyon trajectory turns back in time. This time barrier is found to exist
even in the quantum mechanical discussion of tachyons.

This property is used to set limits on the mass of a tachyon. The possible
astronomical checks on the hypothesis that neutrinos or photons may be
tachyonic are also discussed.

I. INTRODUCTION

Tachyons are particles travelling faster than light. Contrary to the general
belief their existence does not violate the theory of relativity, although their detec-
tion may require a modification of certain established notions of causality in physics.
Indeed, a considerable part of research on tachyons has been devoted to resolving
different conceptual paradoxes (cf. for example, Bilaniuk, Deshpande & Sudarshan
1962; Sudarshan 1970). From the experimental point of view, however, it is
necessary to know how tachyons can be produced and how they can be detected
through their interaction with ordinary matter. Some particle physicists have
discussed the quantum mechanical properties of faster than light particles, which
would be relevant to their production and detection (Sudarshan 1968; Feinberg
1967; Dhar & Sudarshan 1968). So far attempts to produce and detect such
particles in a laboratory have yielded null results.

So far as production is concerned we need not confine our attempts to the
terrestrial laboratory alone. Astronomical discoveries have shown us time and
again that the Universe contains phenomena on a much grander scale than could
ever be produced in the laboratory. Cosmic rays, pulsars, supernovae, quasars and
the exploding galactic nuclei are some of the examples of such astronomical
phenomena. One can get round the production problem by arguing that tachyons
may somehow be produced in some such extreme event in the Universe. And, the
most extreme of such events is the big bang itself, provided the Universe originated
in a big bang.

In this paper we will assume that such a big-bang event did exist and that the
tachyons were produced at or just after this event along with the elementary
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particles of other matter. In that case, would such primordial tachyons exist up to
the present epoch to provide a tachyonic background, analogous, say, to the
microwave background? In attempting to answer this question we will also assume
that the tachyons produced in the early stages of the Universe have very little
interaction with matter so that their survival depends only on their propagation
through the expanding Universe.

We begin by recapitulating briefly the properties of tachyons in flat space-time.

2. SOME BASIC PROPERTIES OF TACHYONS

Throughout this paper we shall take the velocity of light and the Planck constant
divided by 27 as units. In Minkowski space with the line element

ds? = di? — dx®— dy? — dz® (1)
we define the 3-velocity of a tachyon by
_|dx dy d=
= [E’ ar E] (2)
with
v = |v|Z>1. (3)
The energy and momentum [E, P] of the tachyon are given by
M Mv -
E=———=MI P=-——,
VeR—1 Voi—1 o
where M is a real constant, and I is the relativistic factor
1
F =, 5
¥/ (5)

analogous to y = (1—22)"12 for particles with 22<1. It is convenient to define
another parameter

_ vl
B= e (6)

P=[P| = pM. (7)

A tachyon with v — 1 has infinite energy while a tachyon of infinite velocity
has zero energy and momentum P = M. Like the rest mass for ordinary matter,
M may be identified with the magnitude of tachyon momentum in the frame of
reference in which it has infinite velocity.

Quantum mechanically, the spin of the tachyon may be determined from the
considerations of unitary irreducible representations of the inhomogeneous Lorentz
group (the Poincaré group). It turns out that the tachyonic representations are
either spinless or infinite dimensional. T'his is because the group of transformations
which keep a particular energy momentum vector of a tachyon invariant the so-
called little group, is the Lorentz group in 24 1 dimensions. All the unitary repre-
sentations of this group are infinite dimensional except for the trivial one-dimen-
sional representation. The infinite dimensional representations fall into two
mutually conjugate discrete series for which the helicities have a fixed sign, an

so that
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exceptional series which is continuous and a principal series which is also con-
tinuous. All these could correspond to integral or half integral spin, e.g. for a
photon or a neutrino. In fact all these representations correspond to the existence
of a infinite number of polarization states. We will return to the question of tachyon
spin in Section 3. '

Taking the simplest, spinless, case we may describe the quantum tachyon by a
scalar wavefunction ¢(x, y, z, ?) satisfying the Klein-Gordon equation

(O-M? ¢ = --?—V%—M’%S = o. (8)

These plane wave solutions of this are of the form

¢ ~ exp (—tEt+ir.P)
where r = (x, y, 2) and

Edm P2-M2, (9)

The quantization problems connected with (8) have been discussed by Arons &
Sudarshan (1968) and by Dhar & Sudarshan (1968).

3- TACHYON PROPAGATION IN THE EXPANDING UNIVERSE

In this section we assume that the tachyon, created in the early stages of a
big-bang universe, obeys the relativistic law of gravitation, but is otherwise free
from any other interaction. The Universe itself we assume to be given by the
Robertson-Walker line element '

ds? = dit— S2() [ “"’;

e+ ¥(d0%+sin? 0 d¢2)}. (10)

Here (7, 0, ) are the constant coordinates of a Weyl-type fundamental observer,
t 1s the cosmic time and % the parameter with possible values —1, 0, + 1 specifying
the sign of curvature of the spaces # = constant. The function S(t) represents the
expansion factor. The discussion given here could apply to any S(#); but we will
restrict specific examples to the classical Friedmann models.

3.1 Classical considerations

The classical tachyon under the above assumptions, will describe a spacelike
geodesic. Without loss of generality we will assume that it was created at the point
¥ = o, at the epoch t = #y and was moving in the direction 6§ = 6y, ¢ = dp. The
geodesic equations immediately lead to the result that this direction is unchanged
throughout the motion. The #, # equations respectively become

‘&.—}.2 S.d_?‘é.t.__._,&'_. (tﬁ‘.)zz [s] (II)
ds? ' " Sdsds 1—ke2 \ds, ’
and
dit S 1 dr\?2
E;E‘-I-S'—_I .y (EF) = 0. (12)
The equation (11) integrates to
Se 'y
— = constant. (13)

:\/1 — ke ds
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For a tachyon we anticipate that the constant on the right-hand side will be
imaginary, because ds is imaginary. Writing

ds = ido (14)
we rewrite (13) as
Sz ar
—_— S I
| Vi-ktde ™ ()
where Sn, is a real constant. Using (15) and (10) we get the first integral of (12):
dt\2
ek s -
S (dg) Sm?— S2, (16)

Finally, we relate (15) and (16) to the tachyon 3-velocity in the rest of frame of the
fundamental observer instantaneously coinciding with the tachyon at 7, z. This
velocity is given by

S dr
W= Vimia g
We get from (15) to (17) the simple relation
S(t) w(t) _ _
e S(?) B(t) = Sm. (18)

The momentum P of the tachyon therefore steadily decreases as S increases, -
according to the relation

Sm
P(t) =M —. (19)
S(2)
1
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Fi1c. 1. The space-time diagram shows the difference between a null trajectory and a
tachyon trajectory in an expanding Robertson—Walker universe with k = o. The trajectory
Sfor the tachyon bends back at the epoch tm and is symmetrical about the line r = 7.
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This is the cosmological redshift as applied to tachyons. It is interesting to note
that the momentum of ordinary massive particles as well as zero rest-mass particles
also decrease inversely as S.

However, there is an important difference in one respect. For tachyons P(¢) > M
and hence S(#) < Sm. This is clearly impossible if a tachyon continues to propagate
forward in time in an indefinitely expanding universe. What happens when S(#)
finally becomes equal to Sm, say at # = #y ? The answer is provided by the equations
(16) and (12). At ¢ = Iy, dt/do = o but d?%¢/de? <o. In other words, # is a maxi-
mum of the tachyon trajectory!

The situation is illustrated in Fig. 1, which is a space-time diagram. The dotted
line represents the null line from » = o, t = #0. The solid line, representing the
tachyon motion, is always below the null line and steadily decreases in slope until
it is flat at # = #m, where 7 = rm (say). For 7 > ry the trajectory bends back in time
and heads towards the singular epoch # = 0. At ¢ = #y, the energy of the tachyon
is zero, and its momentum equal to M. The backward in time trajectory may be
interpreted as an antitachyon moving forward in time which just annihilates the
tachyon at ¢ = #y. Thus nothing is left for later epochs #> .

A simple calculation shows that the energy of the tachyon, as it approaches the
time barrier at # falls to zero at the limiting rate

E =~ Mv2Hy(tn—t), (20)

where Hpy = [S/S]im is the Hubble constant at the epoch #y. The tachyon—
antitachyon annihilation at #y, is therefore a gentle process unlike the annihilation
of an electron positron pair.

3.2 Quantum considerations

We now consider the corresponding problem for a quantum tachyon. For
simplicity we shall discuss the spinless case mentioned in Section 2. Before we do
so it is necessary to generalize the Klein-Gordon equation (8) to curved space-
time. This may be done in a variety of ways; but we choose the one which is a
conformally invariant transform of the wave operator:

(O+3R) ¢—M2% = o. (21)

Here R is the scalar curvature. Apart from the convenience in the present problem
there are reasons, discussed elsewhere (Hoyle & Narlikar 1974) why physical
theories should be conformally invariant,

The convenience arises from the fact that the cosmological space-time in the
present case, is conformally flat (Infeld & Schild 1945). The demonstration of this
is obvious in the case k = o which will be considered below.

The coordinate transformation

dt
transforms (10) to the conformally flat form
ds? = Q2(7)[dr2—dr2—r2(df2+sin® 8 d$?)], Q(r) = S(2). (23)
The equation (21) is transformed to
5% _vag—M0xn) § = o (24)

dr2
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where
¢ = Q) . (25)

Thus (24) is the flat-space Klein-Gordon equation but with an epoch-dependent
mass term.

Corresponding to the classical free tachyon we now consider the planewave
solutions of (24) of the form

¢ = f(r) exp (ipx) (26)

where p is constant and x is a specified 0, ¢ direction. The function f(7) satisfies
the equation

j—:{ +[p2— M2 f = o. (27)

In principle, given a specific cosmological model, f can be solved. However,
since the atomic time scales corresponding to M1 are small compared to the
cosmological time scales, the following approximation procedure will be adopted.
Over a time interval comparable to a few multiples of /1 around a given epoch
1, we will approximate {)(r) by the constant Q(r;). There is an exceptional epoch,
where greater care is needed and which will be discussed separately later. Writing
f o exp (twr) we get

w = V27— MEQ¥(ry). (28)

In the proper time of a fundamental observer, the ¢ energy ’ of the tachyon is

given by
dr PE. 1/2
B =% - (B-m)" (29)
where €1 = Q(r;). Therefore, we interpret the momentum of the tachyon at the
epoch 7y, as given by
p=2
1 5% (30)
This is the quantum analogue of the classical relation (19).
The exceptional epoch is the one given by

Qrm) = £ = O (say), (31)

and corresponds to Z = Iy, on the #-coordinate scale. For 7 <7y, w is real and we

have an oscillatory wavefunction. For > 7, the wavefunction is expected to be

damped. The change-over at 7, is therefore worth a more careful examination.
Near 7 = 71 use the following approximation

Qr) = Qrm)+ (7= 7m) HnOm® (32)
and define
§ = (2Qm3M2Hm)V2 (1—7m). (33)
The equation (27) is then approximated by the Airy equation
42
2T _tf=o. (34)

dg2
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For £> 1, the damped solution of this is given by the asymptotic form
. I 5
f=A4i§) ~ —=& M exp (—§67). (35)
2/

This solution when continued through ¢ = o on to the negative values of £, has
the asymptotic form for —¢> 1,

f=AdiE) ~ ?I; (—&)V4sin E (—5)3=’2+§-J. (36)

The details of this may be found, for example, in Jeffreys & Jeffreys (1946). We
first note that these asymptotic forms are justified under the given assumptions.
The large value of ¢ does not imply a large enough value of |r—7m| for (32) to
become invalid. For, (32) becomes inapplicable when Qu(7—7m) Hm ~ 1. Since

£ (ZME)US@;,

On(r—7m) Hn  \Hu®

we can have £€>1 but Qu(r—mm) Hm<1.

Within such permissible limits, it is easy to see that (36) represents an incoming
and an outgoing wave. The magnitude of the energy associated with either wave is
given by

(37)

B %g (—&)%2 | = (2M2Hp)V2(ty — )12, (38)

This is the exact analogue of (20). As in the classical case we can look upon (36) as
representing a tachyon and an antitachyon each with energy E tending to zero as
the epoch #y or 7y is approached.

The solution for 7> 7y, represents a damped wave. The characteristic time scale
for damping is given by (M 2Hy,)"%/3. If H is the Hubble constant at the present
epoch, we have

2/3( FT\ 13
(M2Hp) ™13 ~ (?:;) (é—fn) .10 85, (39)
where me is the electron mass. 'Thus the time scale of survival for a tachyon whose
time barrier happens to be at the present epoch, and whose mass is the same as
that of the clectron is about 10 ns.

The choice of the particular Airy function and the existence of the time barrier
implies that the boundary conditions cannot be set at random but must be chosen
to be symmetric between tachyons and antitachyons (if they are distinct).

4. THE COSMOLOGICAL LIFE-TIME OF A TACHYON

We now ask the following question:  Under what conditions can a primordial
tachyon survive to the present epoch?’ The answer is provided by the formula
(18). If at some early epoch to the tachyon had § = B¢ we must have

SoPo> Sp (40)

where Sy, is the value of S(t) for the present epoch # = ¢, Similarly So = S(%o).
As a typical primordial epoch we take #p ~ 1s to represent the early nucleo-
synthesis of deuterium and helium. The present epoch ?#; cannot be determined
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without specifying the cosmological model. We shall obtain numerical estimates for
two well-known models: (i) the Einstein—de Sitter model with k2 = o and § oc2/3,
and (ii) the empty Friedmann model with 2 = —1 and S o £. The two models
will be denoted briefly by E-dS and E-F respectively. Setting the present value
of Hubble’s constant Hp ~ 1-5x 10718 371 we get the following limits on So.

Bo> ~ 55x10ll (E-dS),
Bo> ~ bx101  (E-F). (41)

Since, for v & 1, Bo & ['y, the same limits are also applicable to T'y, and they
imply that only the very energetic tachyons will survive to the present epoch.
The values given here are high but not too high in the context of a hot big bang.
Even in the present relatively quiet epoch we encounter cosmic ray protons with
y-values up to 1012,

The Bo or I'g values can be related to the mass M by an equipartition argument.
Suppose at 7o there existed an equipartition of energy per particle for particles of
all species. Then we may write

MTo ~ meye (42)

where ye was the y-value of the electrons. At the time of element synthesis ye is
estimated to be ~ 1—10. Taking ye ~ 10 we get from (41) and (42)

M_(~18x107ll (E-dS)
o S|~ 16x 10716 (E-F). (43)

Thus primordial tachyons have to be considerably less massive than electrons if
they have to survive to the present epoch. If, we further require, that the primoridal
tachyons not only survive to the present epoch, but do so with a considerable
energy, i.e. with B(#p)> 1, then the right-hand sides of (43) will have to be lowered
further.

5. ARE PHOTONS OR NEUTRINOS TACHYONS?

If tachyonic masses are very low, much lower than indicated by the limits in
(43), the question may be posed: whether the so-called zero rest mass particles
like the photon and the neutrinos might not in fact be tachyonic. In this section
we review the possible checks that can be made on this provocative statement—
both theoretically and observationally.

In Section 2 we have remarked on the infinite dimensional unitary representa-
tions of the 2+ 1 Lorentz group, and how these lead to infinite number of polariza-
tion states. These states are likely to be important, through their mutual inter-
ference, when the tachyon has low energy (I' < 1). At high energies (I'> 1), however,
the various polarization states virtually decouple and in the limit I' > co they
become independent. So in the case of a high energy tachyon, the higher modes of
spin will be negligible and one may approximate the exact situation closely by
the state of spin 1 for a photon and spin } for a neutrino.

Consider first the possibility that the photons in the microwave background
are tachyonic. If the background is primordial in origin, such a statement already
implies that the limit (40) operates. However, in view of what has been said about
the spin states of a tachyon, we must have the present I-value of these tachyonic
photons also large compared to unity. This is because the microwave background

T
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appears to conform closely to a blackbody distribution and this implies that only
two polarization states contribute to the numerical magnitude of the Stefan-
Boltzmann constant.

Therefore for the microwave background photons the energy must be large
compared to the mass M. For a photon of wavelength A this relation is equivalent to
M _2e

oy (44)
where Ae is the Compton-wavelength of the electron. At the peak wavelength of
A ~ 1 mm for this background, (44) gives M/me< ~ 1071:. However, if we go
down to radio photons of a few MHz frequency this limit will have to be lowered
by two or three orders of magnitude. These limits are in the same range as those
given by (43) using the cosmological survival and equipartition arguments.

There have been numerous attempts to set upper limits to the photon rest-mass
w (see Goldhaber & Nieto (1971) for an excellent review) and these have resulted
in upper limits on the ratio of u to the electron mass of the order of

H < ~ 107211020
me< 10 10720, (45)
It is not immediately clear whether these expermments also imply a similar limit (or
a lower one) to M/me. We briefly discuss the astronomical technique using the
Crab Pulsar NPos32. This was suggested by Feinberg (1969) as a method for
setting an upper limit on w. We will consider the case of a tachyonic photon
(M # o).
In this case a photon of frequency v; arrives later than a photon of frequency
vg (< v1) emitted simultaneously from a source located at distance D from the

receiver, with a time gap of

i D [(1 +M2c4) -2 (1 +M3c4) ——1;’2:|

c W2y ? h2yy?2
DM?23 (1 1
=25 i

in the limit M¢2 < hv;. For D measured in kpc and vy, vz in MHz, (46) may be written
in the form

2
[Atlsec ~ 1039 (:Ti) kac[V2‘_2—Vlﬂ2]MHz- (47)

Note that this effect is the reverse of that discussed for M = o, 1 + o. In the case
of p =+ o, the short wavelength photon arrives first; an effect similar to that
produced by interstellar dispersion. In the present case the interstellar dispersion
runs counter to the above effect. The time delay produced by a plasma density N
is given by

2
s DN (s 1)
2TMeC ,vzz vlz
Le.
[&t]sec ~ —4.108 kac[V2_2— Vl_z]MHz[N]cm*s- (48)

For N ~ 2-5x 1033 (M/me)2 cm~3 these effects will exactly cancel. An interstellar
electron density of 1 cm™3 will more than counteract any tachyonic mass effect
for M{me < ~ 2x 10717, Caution must therefore be exercised in interpreting At,

8
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With regard to the possible tachyonic nature of the neutrino the experimental
limits are much less incisive. In this case we have no genuine information about the
time of flight of neutrinos of various energies and we must rely entirely on the
energy momentum relation and the present cosmological considerations. The
allowed shape of the beta spectra of nuclei, in particular the behaviour of the
distribution function at the high electron energy end are consistent with a zero
neutrino mass (Marmier & Sheldon 1969). There is, however, considerable un-
certainty at the high electron energy end to permit a neutrino rest mass

m,< ~ 5x 1074 1me. (49)

A similar limit would be permitted on a tachyonic mass of the neutrino on the basis
of the experimental Kurie plot (Marmier & Sheldon 196g). It is interesting that
the limits set by (43) are much lower. Thus we can argue that primordial neutrinos
cannot survive to the present day as tachyons if their tachyonic mass exceeds the
limit (43).

Weinberg (1962, 1972) has discussed the nature of the neutrino (and anti-
neutrino) background to be expected in the expanding Universe. Because neutrinos
are fermions their degeneracy, complete or partial will affect experiments involving
their emission or absorption, e.g. the beta decay experiment. Weinberg (1972) also
discusses the effect of a neutrino and antineutrino background on the survival of
very high energy cosmic ray protons. In the present context, because the tachyonic
neutrinos do not survive for ever, the above type of degeneracy arguments are not
likely to be 51gn1ﬁcant in the observed phenomena about neutrinos.

The nature of spin mentioned earlier in this section, does raise the important
question: how are tachyonic neutrinos to be coupled with ordinary elementary
particles like n, p, e, =, etc., described by finite dimensional spin representations?
Clearly the coupling cannot be linear in such cases, unless we are willing to re-
examine the various assumptions that determine the coupling. For instance, we
may consider describing hadrons also by infinite component objects as has been
tried by Nambu, Barut, Béhm and others. It will then be possible to describe the
semi-leptonic weak interactions by the familiar hadron-neutrino-lepton coupling.

Alternatively, we can have spin half tachyonic neutrinos if we choose a non-
unitary representation. For I'> 1, the extent of ‘non-unitarity * is small. So far no
experiments have been done to test the unitarity of processes involving neutrinos
to any degree of precision.

6. TACHYONS NEAR THE BIG BANG

Regardless of the question discussed in the previous section, the tachyons, if
they exist, are likely to influence the big-bang cosmology in a significant way. We
describe two aspects in which tachyons would have played an important role near
the big bang.

Consider first the coordinate distance covered by the tachyon following the
trajectory described in Section 3. We illustrate here the simple 2 = o case, for the
E-dS cosmology. Write

S = (t/tp)*® (50)
and define vg = cosec ¢g. Then from (18) we have
Sm = Sosec do, tm = fo(sec ¢o)3/2. (51)
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The distance 7p, is given by the integral

=3 e f 4o -
e ey~ ¢ &
For very energetic tachyons ¢ & /2 and we can approximate (52) by
o 3 e f R _dd
m & — /S — &~ 3'9%p4/Sn.
m =25V Sm | o g~ By (53)

The proper distance at the epoch #m, from the starting point, is rmSm = 3°9 m.
However, it is the coordinate distance which is of interest here. As seen in Fig. 1,
the tachyon turns back in time for » >y, and follows a symmetric trajectory about
r = rm. Thus when it reaches close to the big-bang epoch it will have covered a
coordinate distance ~2rmy. In other words, the tachyon at » = o, t = #; is corre-
lated in its motion with an antitachyon at # = 2y, £ = #,. A tachyon-antitachyon
pair therefore provides an efficient way of establishing correlations over distant
parts of the Universe in the early stages. Such a contact is the first step towards
understanding why the Universe has been so homogeneous and isotropic right
from the very early stages. Ordinary matter with 2 <1 is bound by short particle
horizons which prevent such large-scale communication in the early stages of a
big-bang universe.

The second effect of tachyon is expected to be on the dynamics of expansion of
the Universe. A tachyon fluid has large pressure to density ratio so that its energy
momentum tensor is likely to violate the energy conditions of the established
singularity theorems (Hawking & Ellis 1973). The situation, in principle, is similar
to the C-field of Hoyle & Narlikar (1964). When applied to cosmology the C-field
yields non-singular but exploding models of the Universe (Narlikar 1974). In the
same way the presence of an appreciable number of tachyons in the early stages
may remove the space-time singularity associated with the big bang. It is proposed
to investigate this problem for the Universe as well as for compact objects, in a
future paper.
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