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By making use of the renormalization group technique, we show that the compositeness 
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conditions required for the equivalence of quantum chromodynamics and the corresponding 
four-fermion theory may be demonstrated for a large class of gauges. It is also pointed out from a 

study of soluble models that the equivalence in the sense that the wave functions are the same for 
finite energy does not guarantee the total equivalence of the Yukawa-type theory to the 

four-fermion theory. 

A reduction in the number of fundamental fields in interaction naturally 
leads to a unification of interparticle interactions. This has motivated several 
authors’-5) to attempt to obtain the intermediate boson of a Yukawa-type 
theory as a composite of a single, quartically6) self-coupled spinor field. Of 
particular interest is the case when the resulting Yukawa theory admits either 
an Abelian or a non-Abelian local gauge symmetry. The gauge bosons are 
then regarded as composites of the fermions. 

It has recently been shown that for certain types of non-Abelian gauge 
theories, the compositeness conditions are automatically satisfied, e.g., in the 
case of quantum chromodynamics with ten to sixteen flavours7*‘). We argue, 
however, that satisfying the compositeness conditions may not in itself be 
sufficient to ensure the equivalence of quantum chromodynamics with the 
corresponding four-fermion theory. 

We proceed, following ref. 8, by first deriving the compositeness conditions 
and then showing that they are automatically satisfied. To this end, we rewrite 
the four-fermion Lagrangian 

by introducing auxiliary fields A,, as 

23 = &,(iiJ - mb)& - g&t,~,, 4 Jib - AI, + &*Ab, * AK, (2) 

with Gb = g$Sp*. 6p; can then be written formally in terms of the renor- 

*Permanent address: Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan, The 
Republic of China. 
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malized quantities (the subscript, b, in (1) and (2) indicating bare quantities) 
defined by I6!& = Jib, I//-Z;A, = A+, Z;3’2Z,g = gb, as* 

& = +(ia - m)t,I~ - g&y, $ J, . A’ - bF,,, . F” 

+ 
[ 
(Z, - 1)&a - m)J, + Zz(m - mb)$@ - (Zrr - l)g$‘y, $ $ ’ A“ 

+ ;( a,A, - &A,)’ 

+ ;g(a,A, - &AA,). (A’ x A”) + &‘(A” x A”)‘+ ;Z&*A, . A” 
I 

, 

where Z,r = Z3rZ1Z2 and Fpy = (aBAY - &A,) + gA, x A,. 
Following the same steps, the quantum chromodynamic Lagrangian 

zo = &(ia - m,,)$b - g&,y,, $l(lb ’ A’ - aF,,, ’ FgY, 

can also be written in terms of the renormalized quantities as 

6poR = &id - m)$ - gfiP 3 I+II - A’ - &‘,, * F’” + [ (Z2 - l&!&Y - m)t,G 

(3) 

(4) 

’ + Z2(m - m&j& - (Zrt - l)gfiP 5 JI - A” - b<Z, - 1)(&A, - &A,J2 

- t(Z, - l)g(&A, - &AA,) * (A, x A,) - !(Z, - l)g*(A, x M2], (5) 

with Z4 = Z$Z,. The separation in (5) is to be understood in the sense that the 
terms in the square brackets are counter-terms to cancel 
the radiative corrections which occur in perturbation 
renormalized quantum chromodynamic Lagrangian, 

the divergent parts of 
theory based on the 

(6) 

The conditions for 
easily seen to be 

z3=0, z1=0 

We now use the 

the form equivalence of Lagrangians (3) and (5) can be 

and Zd= 0. (7) 

renormalization-group method to show that eqs. (7) are 
satisfied for quantum chromodynamics. The renormalization constants Zi that 
relate bare quantities to the corresponding quantities renormalized at the 

* The mass 6~ of the field A,,* is chosen so as to cancel that which arises in the calculation of 
the self-energy of the A, field. We may regard this, following Eguchiq, as a regularization 
prescription. 
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Euclidean point, CL, have the functional dependence Zi = Zi(A/F, gb, ab), where 
A is the ultraviolet cut-off and gb and ab are the bare coupling constant and 
gauge-fixing parameter, respectively. We carefully distinguish*) the Zi’s from 
the constants 

which relate quantities renormalized at two different points p and ~0. The 
quantities g( PO) and a( cam) are the coupling constants and gauge-fixing 
parameters, renormalized at po. 

We define, as usual, the quantity yi as 

By rather straightforward manipulations, the integral form of (8) can be 
written as 

Z,(P) P(P) 

I $dZi=- J (9) 
I 

%(g~y’{;;;)p’)) dg(P!), 

Zi(ld. Bhd 

where p = F(ag/@). Expanding yi and /? as power series in g, we have 

yi = +i(o)g*+ * . * and /3 = - bg3, (10) 

where 4 

1 
b=iG 3 [ 

llN,-$Nr , 1 ~,(~)=~[(~-~)N~-~Nf]r (11) 
ida)=-b+~?du), vda)=&aN,, TXa) = 2%(a) - +3(a), 

where N, and Nr are the number of colours and flavours, respectively. 
In order to obtain the solution to (9), we have first to solve the renor- 

malization group equation 

-j-f& = 73(a)+) 

for a(p). The solution to (12) can be readily written as’@) 

ah) = 13 
Id~o)le(r)lk(~ NC- $ Nr)aW 

6NC-;N+ c&0) + k(cL0McL)II’ + ah01 

(12) 

(13) 
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with 

k = ?3(0) _ 13 
b ( yNc-;N,)/(+N,-f Nt). 

We will restrict ourselves to asymptotically-free theories with -jG(O) <O since 
it is only then that the compositeness conditions can be satisfied. Also, as 
pointed out in ref. 8, the validity of eq. (13) is restricted to cu > a, = 

32r2T3(0)/N,. Hence we restrict the forthcoming discussion only to 
choices of gauge. 

The effect of the renormalization constants on the renormalization 
can be readily obtained using eqs. (9) and (13). We find, 

Z,(A//.L) = Z,0[~]2[g(~~)I~(~)12, 

such 

point 

(14a) 

(14b) 

(14c) 

with A = 32n2q3(a)/N,a. We see from eqs. (14) that if the renormalization 
constants can be independently argued to be finite*, the only solutions to 
these equations for asymptotically-free theories with Nr > (13/4)N, (so that 
k ~0) are null solutions’), so that the compositeness conditions (7) are 
satisfied. 

At this point, we note that our study”) of the corresponding situation for 
the equivalence of the soluble Lee model (Yukawa theory) and the separable 
potential model (four-point interaction) is an explicit demonstration of a 
theory wherein the compositeness conditions are satisfied without the two 
theories being completely equivalent. We have further shown that in order to 
transmute the Yukawa interaction into the four-point interaction, the spec- 
trum of the Yukawa theory has to be truncated. If a similar scenario is 
prevalent for the case of fully relativistic field theories, the present proofs of 
equivalence of quantum chromodynamics with the corresponding four-fer- 
mion theories will need to be re-examined. 

* Heuristic arguments for this have been presented in the footnote before. Admittedly these 
arguments are dependent on the particular procedure for taking limits in the computations. 
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