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ABSTRACT

Extending the work of earlier papers on the relativistic
front description of paraxial optics, we generalize the Jones
caléulus of axial plane waves to describe the action of the most
general linear optical system on paraxial Maxwell fields. Several
examples are worked out and in each case it is shown that the
formalism leads to physically correct resﬁlts. The importance of
retaining the small components of the field vectors along the

axis of the system for a consistent description is emphasized.



1. INTRODUCTION

Several formalisms are available for the description of the
polarization states of light fields and their transformation by
linear optical systems. The Jones calculus1 and the Poincaré
sphere method2 give descriptions of fully polarized light while
the coherency matrix method3 and the Chandrasekhar-Mueller-Stokes
calculus4 are capable of handling partially polarized fields, of
which unpolarized and polarized fields are opposite extremes. In
the conventional formulation the transformation of the coherency
matrix by an optical system is through the Jones matrix of the
system, but this can only handle systems which do not have any
statistical element. The Chandrasekhar-Mueller-Stokes method on
the other hand is capable of dealing with systems having statis-
tical features, such as depolarizing systems. Further, it deals
only with real measurable quantities. The necessary and sufficient
condition-on a Mueller matrix for it to be derivable from a Jones

. ; 5
matrix is also known. -

All these standard methods are based on the assumption that
the‘radiation fields of concern are (superpositions of) strictly
axial plane waves propagating along the axis of the system. Thus
it is assumed that there is no component of the field vector along
the axis of the system. In many realistic situations however the
actual fields are paraxial beams rather than purely axial. Even
the simplestIOPtical system like a thin lens maps an axial field

into a (converging or diverging) paraxial field. Hence a consistent



description of polarization states and their transformation by

optical systems should deal with paraxial fields.

We have recently set up6'7 a general formalism, based 6n the
front form of relativistic dynamicsa, for the treatment of par-
axial wave propagation problems in optics. The Maxwell field can
be represented by a six-component column vector made up of the
components of the electric and magnetic field vectors E, B. By
making judicious use of the Poincaré generators for the Maxwell
field in the front form, we developed a method by which linear
optical systems can be represented as 6 x 6 matrix operators acting
on the column vector representing paraxial fields. The particular
systems dealt with were all those definable within the framework
of scalar paraxial optics, and our analysis based on the Poincaré
group gave an unambiguous prescription to determine their represen-
tation and action on the Maxwell field. A slightly simpler descrip-
tion uses the vector potential, chosen in a special gauge suited
to the front form. Since such a potential has only three independent
components, paraxial fields and optical systems get represented by
three-component column veptors and 3 x 3 matrices respectively.
These two methods are of course mutually consistent. The way they
lead to an unambiguous generalization of conventional scalar Fourier

optics to the complete Maxwell fields has been elaborated elsewhere.9

In the present paper we use this formalism to describe the
action of general linear optical systems on paraxial Maxwell beams.
This gives a generalization of the Jones calculus based on the as-
sumption of axial plane waves, to the physically more correct and
consistent paraxial fields. Section 2 reviews the description of

paraxial solutions of the complete Maxwell equations, which we have



derived earlier. Such solutions, specified either by the E field
or the B field, are expressed in a compact form by separating the
independent field components from the dependent ones. The form

of the most general linear system that can act on such fields is
developed. This clearly goes beyond the class of systems describ-
able within scalar optics. Each possible Jones matrix is shown to be
uniquely and consistently extended to an operator designed to act
on a paraxial E field, and an accompanying operator acting on the
B field. In Section 3 some illustrative examples are worked out:
the rotator, polarizers; retarders and thin lenses. In each case
the way the formalism handles all components of the field in the
proper way is clearly brought out. Section 4 contains some con-

cluding remarks.



2. PARAXIAL MAXWELL FIELDS AND ACTION OF LINEAR OPTICAL SYSTEMS

Let us consider a paraxial quasimonochromatic electromagnetic
wave propagating along the positive z-axis of a cartesian coordinate
system. We denote the mean wave number and the transverse spread
by k = w/c and Ak respectively, Ak << k. For such a wave we have
shown from front form analysis that upto and including terms of

first order in the small quantity sk we have the approximate equali-

k
tieg:
E, ~ €_.B, (a)
E, =~ ] 3_E J (b)
3 k "a"a '’
B ig,p (c) (2.1)
3 ¥ X %a°a = -
Here E and B are the positive frequency (''analytic signal'') parts
of the real fields, subscripts a,b,... run over the transverse val-
ues 1,2; and Eab = _eba with E12 = 1. In the radiation gauge ap-

propriate to the front form, we have the condition A0'= A3; and

for the above wave we have the approximate equalities

A X E (2:2)



valid to the same degree of accuracy as (2.1). Therefore a paraxial
Maxwell wave can be adequately represented by the 3-component elec-
tric column vector

E1(X) E, (x)

E(x) =|E,(x) | ~ | E,(x) ' (2.3)

i
E (x) \E 3, E,(x)

B1(X) —EZ{X}
B(x) = Bz(x) ~ Eq(x) . (2.4)
=1
B3(x) k Eab Ba Eb(x)

%%, such a field is

completely specified by the two independent analytic signals Ea(x}

Thus, as long as we work only to the accuracy

with narrow angular spectra peaked about the positive z-axis.

37 B3 are smaller than the trans-
verse components Ea' Ba by a factor %;u For the purpose of the pre-

sent paper we note that (2.1b) and (2.1c) are immediate consequences

The longitudinal components E

of the Maxwell equations
VEESY *B=E i (2.5)

when one works only to the accuracy %?. In a similar way, (2.1a) is



an easy consequence of the Maxwell equation

2

= E = 0. " 256)

1
= B+J¥

A
The analysis based on the relativistic front form leads us to

the following way of expressing the structure of the column vector

E (x) in (2.3). Out of the leading components of the electric field

we set up a special ''transverse'' column vector as
€ P

E1(x)

E. (x) Ez(x) . (2.7)

We then introduce the transverse ''momentum'' operators

o Tk 8L
B & T (2.8)
a
and two 3 x 3 matrices
0 0 0 0 0 0
61 = 0 0 0 ; G2 = 0 0 0 g (2.9)
i 0 0 0 i 0

The usefulness of these matrices will be soon evident; they are

parts of certain special combinations of the generators of the



Poincaré group. We combine them with the transverse coordinates X,

to define also

G_ . (2.10)

-Ga G. =0 3 - (2:11)

[Qar Qb} = [Pa: Pb] =0,

S . {2.12)}

I

~
o
o

The way in which E3 is determined by Ea in (2.3) shows that the
complete column vector E can be reconstructed from ET by applying

an operator built out of Ga and Pa:

E=e 2% %g_ . (2+13)

Thus any paraxial Maxwell beam is completely specified by the column

vector ET with independent first and second components and vanishing

third component. (Except for a strictly axial wave, ET itself is not

an allowed electric field vector). Hence the most general linear op-
tical system preserving the paraxial property can be represented by

a linear transformation on E, maintaining the form just noted:

a3



E1(xj_) E1(xll
] ]
Ep > Ep = | Ejlx,) = an | Eyix)) = Q.E.. (2.14)
0 0

Here, X, is the transverse coordinate in the input and output planes,
and we have suppressed the dependence on z and t. Clearly, QT is a

3 x 3 matrix, each of whose elements can be a function of X, and PL:
as a consequence in general the effects of the elements of QT on E1
and E2 are to be given by suitable integral transformations. The

L
demand that the third entry in ET be zero requires that the first

and second elements in the third row of QT vanish:

(QT}31 == (QT)32 =0 . {2:15])

By the same token, i.e. because of the form of ET’ the elements in
the third column of QT are irrelevant. For the present we take them

to be zero, and comment on this choice later. The general QT is then

|
, 0
[
J _
QT = 10 : (2.16)
]
— e — - -
0 0:0

where J is the familiar 2 x 2 Jones matrix of the optical system.

Each of the four elements of J could depend on both X, and PL‘

The change in the complete column vector E when ET experiences

the change (2.14) is given by an operator arising out of QT and the



universal operator in (2.13) connecting E and ET:

L}
E = QE
i G_ P -iG_ P
a=e 2 %g.e PP (2.17)
We note that for a thin lens of focal length f,
ik 2
-== X
g=e 2871 .7, (2.18)
while for free propagation through a distance 4,
Ak d PZ. .
J=e 2 L.1. (2.19)

In both (2.18) .and (2.19), J is a multiple of the 2 x 2 unit matrix.
These are therefore systems definable within scalar Fourier optics.
For the most general syétem.of this kind, J is a single linear ope-
rator t{xl, PL) times the 2 x 2 unit matrix. Our earlier analysis

has given an unambiguous rule to pass from scalar to vector Fourier

optics for such systems: it is to replace x, by QL of (2.10) within

1
t(XL' PL)' The effect on E is then given by a 3 x 3 matrix operator

is free, we can

t{Ql’ P ). (In fact, because the choice of (QT)

45 a2
take 2 to be t(QL' Pl)') We now proceed to deal with the most gen-
eral J, thus encompassing optical systems not definable within the

scalar theory.

Along with the 2 x 2 unit matrix, the three Pauli matrices
01, Oyr Oy give a basis of 2 x 2 matrices in terms of which any J

can be expanded:



PL) o i (2.20)

The coefficients jO’ jr can be recovered by

1
5 TF J O, - (2227

: 1 L
JO E Tr Jl jr i
We now use the freedom available in the choice of (QT)33 and

(instead of (2.16)) take

(2p) 33 = Jolx,» B . (2.22)

This makes the scalar optics limit, when j_ = 0, appear as simple
P Ir

as possible. The 0% also are enlarged to 3 x 3 matrices Er by

|
I
|
|
I R

— 1

Iy o ' 0 . (2.23)

i
i
I

Then the QT corresponding to J of (2.20) can be taken as

P ) ﬂ + g g (%

iy Jo(xl, q 3 x 3 PL} o : (2.29)

Q

It is now clear that we need to compute, just once, the three

matrix operators

a =z b"b (2.25)



and then the operator (§ is immediately obtained from the 2 x 2

Jones matrix as

3
=13, (Q,P) +1I

y jr(Ql, PL) s, - (2+26)

Here the 3 x 3 unit matrix accompanying jO is not explicitly in-
dicated, since in general jO(Qlf PL} is itself a 3 x 3 matrix
operator, as is each jr(QL' P ). By virtue of the property (2.11)

1

as well as

. &G B
c e =
I r

{2,.27)

al

Sr are easily obtained:

i I
10 ' 0
. 1
o ' o
8y, = 0 | 8, = 10|, s8y=
| |
T - e
= - ! -
By HP, | 0 1Py R | 0
|

By the method of construction it is guaranteed that for arbitrary
input jO and jr' as long as they do not violate the paraxial nature
of the wave, the operator Q of (2.26) can be applied to any.in-
coming allowed electric field vector and the result will be another

allowed electric field vector.

In passing we may note that even though jr(Ql' Pl) and S in



(2.26) are 3 x 3 matrix operators, they commute with cne another
since they are similarity transforms of the sets jr{xl, PL) and
o_ which commute with one another. However the different j? do
not in general commute with one another, whether the arguments be
XL' PL or QL' Pi; and neither do the Sr'

To conclude this Section, we develop the transformation rule
for the magnetic vector field B that accompanies (2.17). This is
useful when one wishes to trace the changes undergone by the

Poynting vector. For the paraxial case, we have a relation exactly

similar to (2.13) for B:

3. G‘_:1 Pa
§. = 8 ET ’
B1 -E2
By = | By = | E, . (2.29)
0 0

It is now easily checked that when the transverse electric com-
ponents are transformed by the Jones matrix J expanded in the form
(2.20) with coefficients jO' jr the transverse magnetic components
are transformed by a matrix Ja which differs from J only in that
j1 and j3 are reversed in sign while j0 and j2 are unchanged. In

view of (2.29), we can thus write the action of an optical system

on E and B compactly as:



QB = ]O{QL' PL)'*;;1 Gr Jr(Ql' PL) Sr
€1 = 63 = = 62 =1 . (2.30)

Obviously, for systems describable within scalar theory, we have
= QB' This equality persists of course also for all systems for

which j1 = j3 = 0.



3. EXAMPLES

To illustrate the general formalism of the previous Sections,
we describe here the cases of the rotator, the polarizer, the re-
tarder and the (symmetric) thin lens. In the first three examples,
the Jones matrices are purely numerical with no dependence on
either x or Pl; in the last example, there is only an X, -depen-

dence.

Rotator

Consider an optical system which rotates the plane of pola-

rization by an amount ¢. The corresponding Jones matrix is

Cos © Sin 6
J = .
-Sin 9§ Cos 6
Jg = Cos 8, 3, = 35 =0, j, = 1 sin #. (3.1)

Hence 3 x 3 matrix operators @ and QB are equal:

Q= QB = Cos 6 + i Sin 8 -52
I
I 0
l
J |
|
= I 0 5 {3:2)
S S Vo
sin 8 P -5in 8 P Cos &

-—h



The elements (9)31 and (Q)32 are operators with respect to X,

dependences.

Now assume an incoming paraxial plane wave with propagation

vector k in the x, - X3 plane at an angle o to the X4 -axis, where

1

|la|<<1. Let the electric vector be polarized normal to the X, - Xy
plane., Since k = k(a,0,1), the incident electric and magnetic fields
are
0 ~1
E = 1 u , B = 0 u S,
0 o
ik(x3 + ax1) - iwt
u(x,t) = u, e ‘ {3.3)

Thus, E, B and k form an orthogonal right handed triplet. The am-

plitude u(x,t) obeys

P, u = qu, P.u=0 . (3.4)

By applying 2 of (3.2) to the fields E, B, we find that the out-

going fields after action by the rotator are

Sin 8 -Cos §

E =@ E = Cos

D
o

B =Q8B = sin € |u .

-0 Sin 8§ oo Cos 8 {3..5])



The output is a plane wave with the same propagation vector k as

the input, and Et, E', k also form a right hand orthogonal triplet
(to first order in a). We also note that'gl and E' are-propérly re—
lated to E and B through a rotation of amount 6 about k. In the par-

ticular case 8 = n/2, we find that B loses its longitudinal com-

ponent while E picks up such a component:
6 = n/2: E =-B , B =E . (3:6)

These results illustrate that the formalism handles the longitudinal

components properly.

Polarizers and Retarders

A polarizer attenuates two mutually perpendicular components
of the transverse E field by different amounts, while a retarder
introduces a phase difference between them. In either case we can

choose the x axes to be along these eigendirections, so both

X
1" T2
systems correspond to diagonal numerical Jones matrices:

J = . $3T7)

Both j0 and j3 are numerical parameters. For a retarder, we have

jo, = Cos $/24 j3 = i Sin 6/2 , (3.8)



with real §. For a (partial) polarizer, both j0 and j3 are real

and obey
0 <3y *tdgst . (3:9)
The x1—polarizer corresponds to j0 = j3 = 1/2.
The matrices {! and QB are now different:
I
|
[O
g I
; . I
8= 3p * 33 83 = } ’ ’
i
“I3F  I3F; i Jo
g = 3g =~ 33 85 ° (3.10)

As an example let us take first the case of a retarder and let
the input be again a paraxial plane wave with propagation wvector
k = k(z,B8,1), |a], |B| << 1. Let it be plane polarized with the

E vector making an angle of m/4 radians with the x,-axis. We have

iklax1 + sz + x3) - iwt
vix,t) = v_ e 4 (3.11)



The amplitude v now obeys

P.v = av, P,V = BV . T 312

We note that all the components of E are in phase. After action by

the retarder, eqg. (3.8), we have the output electric field

L1672
E = QE = — g i v . (3.13)
V2
_ael8/2 _ ga18/2

Thus @ has not only retarded the phase of E2 relative to ETf but
has also altered the longitudinal component E3 by just the right
1

amount so that E remains orthogonal to the (unchanged) propagation

vector E.

To illustrate the action of the polarizer, eq. (3.9), let us
take an input paraxial plane wave k = k(a,0,1), with the electric

vector at an angle of 7/4 radians with the x1-axis:

E=— | 1 u . (3.14)
V2
-0l
The amplitude u is given in (3.3), and it obeys (3.4). For an X5~

podariset: j0 = —j3 = 1/2, we find:



/0
E =QE-=— 1 u (3.15)
i)
0

which correctly describes a plane wave with unaltered wave vector
k. The important point to note is that (@ acting on E not only anni-
hilates the component E1 but also properly reduces EB to zero, so

L]
that E remains orthogonal to k.

Thin Lens

As a final illustration, we consider the action of a thin lens

whose 2 x 2 Jones matrix is given in (2.18):

=ik x2
2f 7L
= e r ] =0 . (3.15)

Here we have a dependence on x,. It follows from (2.30) that

1
-ik i 2
5 (¥t i G))
o= Qg = 3p(Q)) = e
, 1 0 0
-ik
5fF 2L .
= e 0 1 0 ) (3.17)
o2
T £

As an interesting application, let us compute the effect of the



i *
lens on the Poynting vector P = Re E B . In a paraxial field com-

posed of plane waves whose propagation directions all make small
angles with the x3—axis, the Poynting vector has a major longitu-

dinal component and small transverse components:

|Pa(xl)] << Palx)) . (3.18)

The change in E and B are:

E;(XL} Ea(XL)
: ~ik _2 e
E (xl) N ezf 1 E3(XL} t Ea(xl} . (3.19)
B, (x,) B_ (x))
] .
B3(XJ.) B3(XJ_) * 5 Ba(xi)

From this the output Poynting vector is related to the input by

P3(Xl) ~ P3(XJ_) ’

] ; X
a
Pa(XL) = Pa{xl} - P3(xl) " (3.20)

One identifies this to be formally the same as the ray transfer
equation for a thin lens in geometrical optics. Thus for a lens

located at Xy = 0 and an input field generated by a point source

located at the paraxial point (al, -u), ]a << u, u > £, the

n

Poynting vector at points x over the plane immediately before

L

the lens is proportional to



- sz -

P(x,) = (& (x, -a), 1. (3.21)

Using (3.20), the Poynting vector over the plane immediately after

the lens is proportional to

' 1 %)
B (X_L} = {E (XJ_ - a.L} - F v 1)
& (4
v (bi = xl) g A) (3.22)
where v and bl are given by
1 1 _ 1 _ _ Vv
= B o e bl = 72 - (2.23)

The output Poynting vectors (3.22) for various x are all directed

towards the point (bL' v) . Thus the thin lens and magnification
formulae (3.23) have been derived from Poynting vector (energy flow)

considerations, for which obviously the longitudinal components E3

had to be handled consistently.10

and B3 )



w D8

4. CONCLUDING REMARKS

Our analysis in the preceding Sections generalizes the Jones
calculus designed to deal with the transverse electric field com-
ponents of an axial plane wave to one which describes in a con-
sistent way all the components of the field vectors of a paraxial
wave. In this process we have also developed a procedure for con-
structing the Jones matrix acting on the magnetic vector given
the one to act on the electric vector. We have applied our forma-
lism to several simple examples and in each case we have shown
that it leads to physically expected results, and that the small

longitudinal components are essential for a consistent description.

The present analysis can be easily extended to generalize the
Chandrasekhar—Mﬁeller—Stokes calculus for the fields and optical
systems. It should be noted that earlier attempts11 at such a
generalization have dealt with only the fields and not the optical

systems.

Generalized light rays endowed with polarization properties
have proved to give an exact geometrical picture of the polarization
properties of radiation fields and we have recently énalysed the
behaviour of these rays under action by optical systems which are

?'9. The present formalism

describable within scalar Fourier optics
can be applied to analyse the behaviour of these polarized rays
under the action of the most general linear 0pticél system. Work

in this direction is in progress and will be reported elsewhere.
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