
PHYSICSREPORTS(Review Section of Physics Letters) 137, No. 1(1986) 93—108. North-Holland, Amsterdam

Unfolding, Fibre Bundles,Color Breaking and Gauge Invariance

E.C.G. SUDARSHAN

Centerfor Particle Theoryand DepartmentofPhysics,The Universityof Texasat Austin,Austin, Texas78712, U.S.A.

Introduction

Newton’s Laws of Motion and their natural generalizations are most succinctly embodied in the
action principle in the Lagrangian form:

6 f L(q, 4)dt = 0.

In the generic case the variational Euler—Lagrangeequationsare secondorder nonlinear equations
which would express the accelerations q in termsof the generalized velocities q and positions q. It is
more convenient to pass from these Lagrangian equations to the Hamiltonian equations with

p=/3L//34; H(p,q)=p4—L(q,4);

= — 8H/aq; q = /3H/op,

making use of a Legendre transformation. These are now first order equations with the phase space
variables ~ = {q, p} being treated as the configuration of the system. For a dynamic picture of the
evolution it is most natural to deal with the Hamiltonian form but the action principle is expressed in
the Lagrangianform.

It is a natural question to ask: Given the Hamiltonian equations, which can be written uniformly, in
the form:

= [f(~), H(~)]~.

in terms of the Poisson bracket, could we formulate an action principle also in phase space? In other
words could we get an action principle without ever going to the Lagrangian form? In this context we
must allow for the possibility that the coordinatization of phase space that is employed cannot be done
globally but must be done by the use of overlapping patches.

To get the phase space form of the action principle we define the action along a phase trajectory by
the integral

~i[F]=J(p4_H(q,p))dt =J(pdq—Hdt).
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The Hamiltonian principle in Hamiltonian form is then the statement that

for infinitesimal variations of F. The equations of motion are the Hamiltonian equations with the
Poisson brackets being defined by

9FaG oFaG
[F(q,p), G(q, p)] = — — — — —.3q8p /3paq

The symplectic structure is given by the 2-form on the cotangent bundle T*Q (Q being the configuration
space):

wdA; A=pdq.

This 2-form is closed and exact.
A more general symplectic structure [1] corresponds to the generalized Poisson bracket (g.P.b.)

[F(~), G(~)] =

the associated 2-form is:

to = dA = —~w~,(~)d~’A d~

= oA~(~)/o~’— 8A~(~)/t9~W~’(UpA=

For this g.P.b. the Jacobi identity holds since the 2-form, being exact, is closed:

+ +
8P~A = 0.

Nonexact2-forms and path spaces[2]

However if we started out with a generalized Poisson bracket with a closed 2-form and the
Hamiltonian equations,we see that since this involves only the 2-form, its closure ensurestheir
consistency. A genuinely new situation arises if the 2-form to is closedbut not exact: this would mean
that thereis no global 1-form A such that to = dA. In such a casewe can construct an action functional
and a variational principle from which these equations follow:

Let us make the requirement that the phase space is path-connectedandlet ~j’ be a fixed point in
phasespace.For a trajectory~~(t), t

1 � t ~ t2 define

y~(0,t)=~0
1~ y~(1,t)~’(t)

and let y” (a-, t), 0 � a- s 1 be a smoothcurve for each a-. Then y5’ (a-, t) sweepsout a smoothsurfaceS
which could be thought of as being swept by a curve starting at ~ and ending at ~‘ (t) as t varies.We
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can now define an action functional

~1’[S]= J dtJduw~(y)~- ~?L- J H(~(t))dt

=Jw-JHdt.

This functional depends only on the boundary 9S of S and not on S itself as long as S undergoes
continuous change since to is closed. However there is no global way of expressing !P[S] explicitly in
terms of 8S alone, much less on the part F of aS.

Usually we think of the Poisson brackets as an expression of the kinematics; and the Hamiltonian as
embodying the dynamics. Here there is a reversal of roles in that H is not changed while the symplectic
2-form w”~’and its Lagrangebracketinversew~are changed, thus geometrizing dynamics.

Unfolding [2]

If we further assumethat even in this generalizedcase there is a well-defined configuration spaceQ
with local coordinate q’ and other variables p1’ where the index j runs from 1 to n. The generalized
bracket should then split in the form

~Ik = 0, ~I~k±n = _~J+n.k =

5jk

~J±n.k±n = BJk(q)

Then the inverse w~is the 2-formwith components

= BJk(q) ; toj+n,k+n = 0

~j, k+n = t0j+n k =

The closure property of the 2-form, which guarantees Jacobi identity requires

59 59 59
—Bk,+—B,.+—B.k 0.
3q’ öq’

If the 2-form is exact there is a 1-form A~(k)such that

‘9qk

but for a nonexact 2-form no such global definition exists.
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For this specialclassof systems one can go back to a Lagrangian description by the standard recipe

L(q,4)=4p—H(q,p)

with the Lagrangianequations

daL 59L
~—-—j—-—j=B~(q)4”.

AssumingQ is path-connected, introduce the family of curves

/3’(a-,t):O�a-�l; t
1<t<t2

/3’(O,t)= q
1

0 /3’(l, t)= q’(t).

Thenwe can havethe actionfunctional

cP(S) = J dtf da-BJk($)~f—~—+JdtL(q, 4).

So in this casewemay view this to be the action function for a generalized Lagrangian system whose
configurationspaceis not Q but the path space of Q consistingof continuouspaths in Q form a fixed
point qJ0 to the points of Q. Sucha description contains a great number of redundant variables which do
not appear in the final equations of motion for the accelerations 4 but which are essential to the
formulation of the variational principle.

Monopole-chargesystem

The essentialpoint to be recognizedis that it is not the path itself that is relevant but the equivalence
class of paths,any two paths which can be continuously deformed into each other being considered
equivalent. If there are several equivalenceclasses,the label of the equivalence class is a new
configurationlabel required for complete specification. To overcome the topological obstruction that
leadsto the nonequivalence,pathscan be “unfolded” only in a larger manifold which will contain local
ignorable coordinates.

The electric charge-Dirac monopole [3] system provides the simplest nontrivial example. The
equationsof motion are

~i g jk1~kImx =—e xx.

The correspondingHamiltonianequations

•1 P ~ eg 3d k I
x=—; p=—~~’px
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would beobtainedfrom the Hamiltonian

H = p2/2m

with the generalizedPoissonbrackets:

{xJ,xk}=0; {xI,pk}= ~jk

{~J~k} = — EW~XI.

The configurationspaceQ is R3 — {O}. The associated2-form

B=~BIk(x)dx’Adx~c= —egsinOdOAdq~

is closedbut not exact.This is easilyrecognizedas a multiple of the volume on the 2-sphere~2

J

Dynamics on sections[4]

The equations of motion of the charge-monopolesystemconsidered in the last section was first
consideredin the context of quantumtheory by Dirac [3] who showedthat it entails the conceptof
nonintegrablephaseswhich in turn leadsto the quantizationof the producte.g.of chargeandmonopole
strength. Saha[3] pointedout that the conservedangularmomentumof the charge-monopolesystem
hasan intrinsic angularmomentumof ~hwhich mustbe addedto orbital angularmomentum.

In the contextof non-Abeliangaugetheoriesaccompaniedby spontaneoussymmetrybreakingnew
kinds of monopolesarise. In such theories,oncethe symmetry hasbrokendown there arisedistinct
sectorsin which the asymptoticnonvanishingfield configurationsare topologically nonequivalent;and
in someof thesetherearelong-rangegeneralizedmagneticfields reminiscentof the Dirac monopole.
But unlike the Dirac monopolewhich has a singularity at the origin, in thesetheoriesthere is only a soft
field configuration which is persistent but nonsingular at the origin. It is this twin generalization of
non-Abeliansymmetrygroupsand topologically inequivalentconfigurationsthat generatethe richness
of the non-Abelianmonopoles.Let us briefly survey the Dirac monopole both for its own sake as
illustratinga theory requiringnontrivial manifoldsglobally but alsoto set the scenefor the non-Abelian
monopoles.

Given the equations of motion we mentioned above:

eg ‘ki
mxi=-

3-eIkIx x =eBJk(x)x

with
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g
B.k(x) = ~jkl~

if we attemptto constructa vectorpotentialW’(x) we find that no global solutionexists for a WI which
satisfies

BJh(x) = 59JWk(x)—59kW)(x).

If we denoteby .~ the sphereS2we can define W”1
1 on acontractibleopenset

2N whichmay be thought
of as the sphereS2 with a neighborhoodof the South poleremoved [4]. Equally well we can makea
different choice Ws

1 definedon a contractibleopenset .~ with aneighborhoodof the North polebeing
removedfor S

2. In the region of overlap!N fl 1sthe two vectorpotentialsareconnectedby

WN
1(x)= h~

1(x)(1Vsj(x)_~8j)hT(x);

BNJk(x)= BSjk(x),

whereh~(x)is a phasefactor chosento be

hT(x) = e’~’,

where4 is the azimuthalangle.Thereis no global definition possiblefor W
1(x)as long as we staywith

the configurationspacewhich is the direct productof the openset0< r < with S
2. We mustconstruct

a fibre bundleon which the dynamicscan be globally defined.
Now let usproceedto considera test particlecarryinginternalsymmetry(“isospin”) charge‘a which

is a vectorin the spaceof the adjoint representationof the symmetrygroupH with generatorsTa. Then
the vectorpotentialW, field strengthGJk andthe isospinI maybewritten in the form:

14’~(x) = Waj(X) Ta; Gjk(x) = Gajk(x) Ta;

1’IaTa;

GJk(x) = ~~1Wk(x)— i9kWJ(x)+ ie[ W
1(x), Wk(x)].

The Wong equationsof motion [6] are:

mi~= —eTr(IG,k(x)).~k;

1= —ie~1[W(x),I].

We mayalter the descriptionby a gaugetransformation:

W~= g’’(x) (w~(x)— -~-a~)g(x);

= g’(x) G~,k(x)g(x);

I’ = g~(x)Ig(x).



E.C.G. Sudarshan,Unfolding,fibre bundles,colorbreakingandgaugeinvariance 99

Of course,given an external field G3k the isospin I is not a constantbut precessesaccordingto the
Wong equations.But the isospin can be definedglobally as long as the externalgaugefield configura-
tion is topologically trivial. But as soon as the fields havenontrivial topological properties(like a
monopole)the isospincannotbe globally defined.This is in contrastto the Dirac monopolefor which
the equationsof motion wereglobal. Theactionof the “isospin” groupH is thennot somethingglobally
defined.We shall discussthis below in connectionwith colorbreakingby monopoles;but we seethat as
far as classical theories are concernedwe may work with the equationsdefined on the mutually
overlappingcontractiblesections~ and2~.It couldneverthelessbe desirableto constructaformalism
whereall quantitiesaredefinedglobally. This is providedby the introductionof fibre bundles.Sincethe
field strengthG is totally radial the vectorpotentialsWhaveno radial components,though the angular
componentshaveboth radial andangulardependences.Thewell-definedbut distinct WNand W~over
1N and .~ related through hT(x) can beobtainedby the specializationof a connection11 on a principal
H-bundle over the baseS2 = .~ = ~‘N U 1s• The locally defined potentialsWN, W~ariseby restrictingthe
global connection11 to the sections~N and .~s.The preciseform of 11 dependson the groupH.

Fibre bundles andconnections[7, 8]

As a specific exampleof such a connectionwe choosethe transitionfunction

h~(x) =

where T is a generator of the Lie algebraH. Then the fibre bundle~ over the sphere~2 is obtained
from the Cartesianproduct

= H x SU(2) = {(B, u) I B E H, u E SU(2)}

by introducingthe equivalencerelation

(B, ~ ue’~’), 0~a�2ir.

The product~ equippedwith this equivalencerelation is the fibre bundle ~ = (B, u). The projection

in = ~

is definedby

= ~ Tr(o-uu
3u’)= 1.

For 1~Ndefine:

UN(X) = exp(—~i~u3).exp(—~iOu2). exp(~i~o-3);

and for Zs:

u~(x) = exp(—~iq5u3). exp(—~iOa-2). exp(—~i~a-3).
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Notethat UN is definedeverywhereexceptat the SouthpoleandU~everywhereexceptat the Northpole.

The global action of H on ~ is:

(B, U)E ~-+(BB’,u)E~.

The connection11 should be defined over ~ rather than ~ and should transformunder the global
action of H accordingto

Q(BB’, u) = B’
1 l1(B, u) B’ — ~ B’~B’;

11(e_~TB,ue~)= f1(B, U).

In addition to theserequirementswe wish to imposethe conditionof sphericalsymmetryappropriateto
a monopole:

l1(B, U) = fl(B, u’u), U’ E SU(2).

Here u’ is a rigid rotation independentof x. The solution[9] satisfying all thesethreeconditionsis

iTI(B, u)= _iB7dB_~~B1TB~Tr(a-
3u1du).

A global Lagrangianfor the motion of a particle in the monopolefield is given in terms of a global
connection11 by:

/ r. u1(1~)
~=~mx

2+iTr(KB~IB+ie ‘ BL dt

With the abovechoicefor lithe global Lagrangianis

= ~mi2+~mr~2+ i Tr(KB1B)+ i Tr(KB~TB)~Tr(u
3u’ü).

It canbe shownthat thecorrectequationsof motion follow from this Lagrangianprovidedthe isospin is
identified accordingto:

1= BKB’.

Color breaking: Classical theory

In a non-Abelianmonopolefield theremaybe topologicalobstructionsto the definition of the global
action of the groupH on the non-Abelianchargesof aparticlemoving in an H-monopolefield. A global
definition of the action associateswith eachh E H and each I E S

2 an elementk(I, h) E H~such that

k(I,h’)k(I,h)= k(I,h’h).
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Thus anisomorphismis establishedbetweenH anda groupH~at I. ThesevariousgroupsH1 areall to
be subgroupsof a grandgroupG. Forconveniencewe shall assumethat

k(I, h) = h, I = North pole.

In thesection ‘N we mayconsidera transformationin G dependenton I such that

h -* kN(I, h)= gN(I~
1k(I, h) gN(x)

is an automorphismwhich is dependenton I. There is a similar automorphism

h —* k
5(I, h) = g5(I)’ k(I, h) g5(I)

appropriate for -~s~In the overlap zone
1~Nfl .X~we have

kN(I, h) = h~’(I)k~(I,h) h~(I).

These transformations g~,gs are nonunique to a certain extent and this implies that hT(I) is also
nonunique:

h4(I) = h~(I)1hT(I) hN(I).

We could makethe choicethat the outerautomorphismsof H form a discreteset; thensincekN(I, h) is
to vary smoothlywith I over ~ andgN(N)

kN(N,h)=h.

Then by invoking the smoothnessof kN(I, h) it follows that h —* kN(I, h) is an inner automorphism:

kN(I, h) = hN(1)h h~(I).

We could, in turn, usethis hN(I) to changethe choiceof kN(I, h) so that

kN(I,h)-*kl~(x,h)=h.

This is true all over.~. It remains for us to find a smoothgaugechangeover ..~ suchthat

k~(I,h’) k~(1,h) = k~(x~,h’h)

andin the overlapzone.~ fl ..~ it satisfiesthe transitionrelation

k~(1,h) = h~-(I). h ‘h~I)~.

But the transition function fails to havea uniquelimit as the South pole is approached.Instead,by
suitablechoicewe hopeto get
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h~I)—*c(q5)EH as I—*S.

The transitionrelationbecomes

e(~)he(~)~=h, hEH.

So unlessthe closedcurve c(s~),0 ~ ~ 2in lies in the centerof H the global action of H cannotbe
defined. So if the monopole is nontrivial and H hasa discrete centerthis action cannotbe defined
globally. It is not only that this is not a symmetryof the theory, it cannotevenbe defined.

Color breaking: Quantum theory [9]

Even though most of the abovediscussion is couchedin the languageof classicalsystemswe seethat
this same impossibility of defining the global group H obtainsin quantumtheory. In this context we
recognizethat for an Abelianmonopoleall transformationsof H areglobally realizable.

Sincethe impossibility of the global applicationof H dependedon the lack of commutationwith the
transitionfunction hT(I), to this extenth.,-(I) definesthe breakdownof the global groupH. Howeverit
mustbepointedout that two very different transitionfunctionscandescribethe samemonopolesector
if

hT(I) = &~l~T, hT’(I) = e~~~T’

aretwo transitionfunctionssuch that

c(t/?) = ~ e~~T’

is a closedcurvewhich can be shrunkto zero.
As an exampleconsiderthe examplesuggestedby applicationto particlephysics:

H = [SU(3)~x U(1)em]/Z3= U(3).

For the elementarymonopolewe could choose

/0 0 0

hT = e’
T~ T = ‘ A

8/\/3 = ( 0 0 0
\o 0 0

The commutantof T is

KT = SU(2)~x U(1)~~x U(1)em

whereSU(2)~actson the first two colors and Y~is the correspondingcolor hypercharge.This would
certainly indicatecolor breaking of a definite kind. However an alternativechoice of the transition
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function is

0 0

hT = &4~T; T’ = ( 0 1 0
\oo2

The curve e~T
4~. etT’~~is homotopically trivial and hencehT and hT’ define the samemonopole.

Howeverthe globally definabletransformationsconstitutethe Abeliangroup

K~.= U(1) x U(1)x U(1).

Sothe groupsK~andK~.neednot bethe same.The homotopicclassificationof monopolesis too crude
to tell usthe full physicsof symmetrybreaking.

Anotherinterestingexample,againsuggestedby particlephysics,is

H = [SU(2)x U(1)]/Z
2 = U(2).

The transitionfunctionshT, hT’ correspondto

/10 0\ /20 0
T=( 0 0 0 ); T’=( 0 —1 0

\o 0 —iJ \o 0 —1

It is easily verified that T and T’ describethe samenon-Abelianmonopole.In this casewe can
constructh(I) as a3 x 3 matrix function of (0, ~) which satisfies

h(0,çb)= e; h(in,çb)= h~(q5)h~’(ct~’.

In this caseboth KT and KT’ areU(1) x U(1) but distinct actions.
Onecould ask: what if we disregardedthe prohibitionto extendingH from .~ to all of S

2?What
could possiblygo wrong?What happensis that disallowedcolor transformationscreateconfigurations
with infinite energy.This happensbecausethe illegal transformationscreatea 8-function singularity in
the field strengthat the South pole; and in turn, to an infinity in the total field energy.We must
recognizethat the old andnew field strengthsare not gaugetransformationsof eachothersincethey
differ by a 8-function at the Southpole.

Similar resultscan be demonstratedfor the energyof a quantum-mechanicalparticle in a color
monopolefield.

Gaugeautomorphisms and canonical implementability

Having recognizedthe startling result that color symmetry could be broken in the presenceof
non-Abelianmonopoleswe ought to be concernedwith othersymmetriesincluding Lorentz invariance.
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We should alsocarefully distinguishbetweenautomorphismsthat leavethe relationsunalteredin form
andgenuinesymmetriesrealizedby canonicaltransformations.This we proceedto do.

Let usconsidera theory involving gaugefields whosepotentialsare denotedby W,, andmatterfields
which we take to be spinor fields tfr. The Lagrangianof the systemin interactionand the equationsof
motion are invariant undera largegroupG of automorphisms:

W~hW~h~+h59~h1ç/i—~D(h)t/i,

whereD(h) is the matrix realizationof the gaugegroupG on t/u. The transformationh(x) is requiredto
be smoothbut otherwiseunrestricted;it neednot go to any specificlimit as x goesto infinity.

Evenin usualfield theoriesnot all automorphismsarecanonicallyimplementable:in quantumfield
theory this meansthe impossibility of defining unitary operatorsgeneratingsuch transformationswhile
in classical field theories this implies the impossibility of canonical transformationsrealizing the
automorphism.The canonicallyimplementabletransformationsform a subgroupG~of G. We may
considerthis as the spontaneousbreakdownof G to G~.Among G~thereis a subgroupG

0 which is
generatedby the Gausslaw operator

D . E+ .10,

whereE is the color electric field and J0 is the color chargedensity. Since the Gausslaw operator
vanisheson any physical state,on physicalstatesthe groupG0 is trivial. We may thereforeidentify the
nontrivial group

= G~/GO

as the global symmetry of the theory. In QCD, for example, G0 goes to unity at infinity while the
connectedcomponentG~of G~include transformationswhich go to any constantat infinity
independentof the anglealongwhich we go to infinity. Thenthe physical groupG~/G0is isomorphic
to the global colorgroupwhich wasthe startingpoint of the gaugetheory.

Following Hanson, Regge and Teitelboim [10] we recognizethe need to smear the Gauss law
operatorandconsiderobjectslike

g(A) = f d
3xTr(A (x) (D . E + J

0)(x))

to vanish on physical states.The test functions A(x) are arbitrary for finite x, but the asymptotic
propertiesof A (x) shouldbeproperlydefined.We shall requirethatA (x) is to beso chosenthat g(A) is
adifferentiablefunctional of A(x) in the sensethat

6g(A)= —fd3xTr(E.DA).

This requires,in turn,
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limJdQr~Tr(A1.6E)=0.

Such a requirementof differentiablefunctionals is necessaryfor the Poissonbracketsto be properly
definedandto obtainthe correctfield equationsfrom the action principle.

Along with g(A) we definealsothe closelyrelatedchargeoperator

Q(M)= JdSxTr(MJ0_E.DM)

which differs from g(M) only by a surfaceterm provided a partial integrationcan be done;otherwise
theyaredistinct. The allowedphasespacefunctionals0(M) generatethe connectedcomponentG~of
the implementablegroupG~.

Gauge theories: Standard sector

For orientationlet us first consideran Abeliangaugetheory. If the chargeandcurrentdistributions
areof compactsupport the r’

2 pieceof both electricandmagneticfields areodd functionsof I so that

E = e~(I)/r2+ O(1/r~)

B = b~(I)/r2+ O(1/r~)

A = a~°(I)/r+ 59~x(x)+ O(1/r2)

wheree~, b~areodd anda°~evenin i. Thenthe allowedsetsof A (x) areof the form

A = A~I) + O(1/r)

while for M(x) it is

M= /3 + A~(I)+ O(1/r), /3 = constant.

The quotient group G~/G~= U(1) with generators

Q(/3)=/3fd3xJo.

Among the gaugetransformationsonly the odd part of x(x) can be changedby the acceptablegauge
transformations.The gaugetransformationsincluding ~°~(I) arespontaneouslybroken.

Similar considerationsapply for the nonmonopolesectorsof non-Abeliangaugetheories.We need
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E = h(x)e~(I)h(x)~+0 (-~)

B = h(x)b~(I)h(x)~+0 (-~)

A = h(x)a~~~(I)h(x)~+ h(x) ah(x)1+ 0(~)
[a~(I), a~(I)] 0,

with h(x) unrestrictedat infinity. Differentiability of the Gausslaw functionaldemands

A(x) = h(x)A~I) h(x)1+ O(1/r)

and

[A ~~(I), A~~~(I’)]= A ~~(I)

with any oddA~.On M(x) the requirementis

M(x) = h(x)Nh(x)~+ 0(1/r)

with N any constantLie algebraelement.

Monopole sectorof gaugetheory

When monopolesectorsare consideredwe haveto reanalyzethe situationin furtherdetail: so we
restrict considerationsto the Georgi—Glashowmodel.The sphericallysymmetricconnectionfurnishes
the vectorpotential

WrIar.I+O(1/r2).

In this casethe r2 terms in E and B are evenand the leading term in W odd in contrastto the
nonmonopolesector,

E = h(x) e~~~(I)h(x)’ + 0 (-~);

B=~h(x)b0~(I)h(xy1+O(~);

A = h(x) a~(I)h(x)’ + h(x) a h(x)’.
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The test functionsA(x) andM(x) arerequiredto be

A(x) = h(x) A°’~(I) h(x)’t + 0(1/r)

M(x) = h(x) (a~°°~+ a~(I)) h(x)~1 + O(1/r).

Question of Lorentz invariance

Let usnow examinethe questionof Lorentz invariance.Due to the “mixing of spin andisospin” the
rotation generatorscontain color operators.The rotation and boost generatorsare respectively the
integralof the Poyntingvectorand the moment of the energydensity.The Poissonbracketof these
generatorsdo not closeamongstthemselvesbut containsupplementaryterms:

{Jk, K
1} = EkJ!KI + g(J(,~1)

whereXkI dependson the fields. Such termsarise in multiple Poissonbracketsalso. If such additional
term hadx which were amongthe allowedtest functionsfor the Gausslaw A then theseg(,~’)would
vanish on physical configurationsand consequentlywe would haveimplementedLorentz invariance.
We can calculate

{K1, {Kk, ‘j,}} = ~kIn~jnmJ,n + g(x1kI).

In the monopolesectorXjkl do not vanish at infinity. So if we restrict our attention to only a Gausslaw
form in which g(A) reduceto unity at infinity, wewould be forced to concludethat Lorentz invariance
breaksin the presenceof monopoles.So it is essentialthat we considera more stringent Gausslaw
which permitsA which do not vanishat infinity.

There is much work neededto clarify our notion of invariancesand transformationswithin gauge
field theoriesand moregenerallywith dynamical systemswith infinite numberof degreesof freedom.
Physicshas movedinto a phasewhere topologiesandgeometricalconsiderationsare playing a crucial
role. The distinction of canonicallyimplementabletransformationsand automorphismsis an essential
physicalconsideration.

The researchreportedin this paperis basedon collaborationwith A.P. Balachandran,G. Marmo,N.
MukundaandJ.S.Nilsson.Someof the resultshavenot beenreportedelsewhereyet. I thankGiuseppe
Marmo for his interestandassistancein the preparationof thispaper.This work was supportedby the
Departmentof Energyunder Grant No. DE-FGO5-85ER40200at The University of Texasat Austin.
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