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Introduction

Newton’s Laws of Motion and their natural generalizations are most succinctly embodied in the
action principle in the Lagrangian form:

afL(q,q')dt=o.

In the generic case the variational Euler-Lagrange equations are second order nonlinear equations
which would express the accelerations § in terms of the generalized velocities ¢ and positions q. It is
more convenient to pass from these Lagrangian equations to the Hamiltonian equations with

p=20L/ag; H(p,q)=pi—L(qg q);
p=-0H/dq; q=0H/dp,

making use of a Legendre transformation. These are now first order equations with the phase space
variables ¢ = {q, p} being treated as the configuration of the system. For a dynamic picture of the
evolution it is most natural to deal with the Hamiltonian form but the action principle is expressed in
the Lagrangian form.

It is a natural question to ask: Given the Hamiltonian equations, which can be written uniformly, in
the form:

F&=1f(&), HE)lpw.

in terms of the Poisson bracket, could we formulate an action principle also in phase space? In other
words could we get an action principle without ever going to the Lagrangian form? In this context we
must allow for the possibility that the coordinatization of phase space that is employed cannot be done
globally but must be done by the use of overlapping patches.

To get the phase space form of the action principle we define the action along a phase trajectory by
the integral

W= [ (pi-H@pydt= [ (pag-Ha.

n
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The Hamiltonian principle in Hamiltonian form is then the statement that
3y =0

for infinitesimal variations of I. The equations of motion are the Hamiltonian equations with the
Poisson brackets being defined by

[F(g,p), G(g, Pl =————

The symplectic structure is given by the 2-form on the cotangent bundle T*Q (Q being the configuration
space):

w=dA; A=pdgq.

This 2-form is closed and exact.
A more general symplectic structure [1] corresponds to the generalized Poisson bracket (g.P.b.)

9F 3G
™ o€’

[F(§), G(¥)] = o™ (§)

the associated 2-form is:

w=dA =30, (£)d¢" nd¢”;
wﬂvu(f) = aAv(f)/a§# - aAu(f)/afy 5 w‘”’w,,)‘ = 6”/\ .

For this g.P.b. the Jacobi identity holds since the 2-form, being exact, is closed:
h\w,, + 0,w,, + 3,0, =0.
Nonexact 2-forms and path spaces [2]

However if we started out with a generalized Poisson bracket with a closed 2-form and the
Hamiltonian equations, we see that since this involves only the 2-form, its closure ensures their
consistency. A genuinely new situation arises if the 2-form w is closed but not exact: this would mean
that there is no global 1-form A such that w = dA. In such a case we can construct an action functional
and a variational principle from which these equations follow:

Let us make the requirement that the phase space is path-connected and let &* be a fixed point in
phase space. For a trajectory £“(t), t, <t < t, define

y“0,0)=¢&"; y(1,0=£&()

and let y*(o, t), 0 = o =1 be a smooth curve for each ¢. Then y* (o, ¢) sweeps out a smooth surface S
which could be thought of as being swept by a curve starting at &* and ending at £~ (¢) as ¢ varies. We
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can now define an action functional

n

¥[S] = f dt f daww(y)ai‘l— f HE() dr

n

=fw—JHdt.
S r

This functional depends only on the boundary 4S of S and not on S itself as long as S undergoes
continuous change since w is closed. However there is no global way of expressing ¥[S] explicitly in
terms of 3S alone, much less on the part I" of 4S.

Usually we think of the Poisson brackets as an expression of the kinematics; and the Hamiltonian as
embodying the dynamics. Here there is a reversal of roles in that H is not changed while the symplectic
2-form " and its Lagrange bracket inverse w,, are changed, thus geometrizing dynamics.

Unfolding [2]

If we further assume that even in this generalized case there is a well-defined configuration space Q
with local coordinate ¢’ and other variables p;, where the index j runs from 1 to n. The generalized
bracket should then split in the form

1k=0’ w],k+n=_wj+n,k=5jk

j+n k+n

w

= By(q).

@
Then the inverse w,, is the 2-form with components
B (q); Wjinkn=0;
@jktn= "@jink= 0.
The closure property of the 2-form, which guarantees Jacobi identity requires

J a
ﬁ_q’Bkl 3q B,-+3q—IB]-k=0.
k

If the 2-form is exact there is a 1-form A;(k) such that

3 3
B (q)= o Aclg)- n Aiq);
j k

but for a nonexact 2-form no such global definition exists.
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For this special class of systems one can go back to a Lagrangian description by the standard recipe

L(g,9)=gp~ H(4, p)
with the Lagrangian equations

d oL 4L

————=Bul(qg) ¢*.
d g ag () 4

Assuming Q is path-connected, introduce the family of curves

Bo1):0=0=<1; Hh<t<t;
B0, 0=q%; B11H=q0).

Then we can have the action functional

®(S) = f dr j da-B,k(,B)——-l— j dtL(g, 4).

So in this case we may view this to be the action function for a generalized Lagrangian system whose
configuration space is not Q but the path space of Q consisting of continuous paths in Q form a fixed
point g’ to the points of Q. Such a description contains a great number of redundant variables which do
not appear in the final equations of motion for the accelerations § but which are essential to the
formulation of the variational principle.

Monopole-charge system

The essential point to be recognized is that it is not the path itself that is relevant but the equivalence
class of paths, any two paths which can be continuously deformed into each other being considered
equivalent. If there are several equivalence classes, the label of the equivalence class is a new
configuration label required for complete specification. To overcome the topological obstruction that
leads to the nonequivalence, paths can be “unfolded” only in a larger manifold which will contain local
ignorable coordinates.

The electric charge-Dirac monopole [3] system provides the simplest nontrivial example. The
equations of motion are

.;_ €8
mx’ = ‘;3‘ e”"x"x’

The corresponding Hamiltonian equations

j eg ikl k.1
p P =

pi
m mr

¥ =
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would be obtained from the Hamiltonian
H=p*2m
with the generalized Poisson brackets:
(¥, x¥}=0;  {x/, p*}=86";

. eg
j k - _ ljk
{p’, p*} €

x'.

The configuration space Q is R*— {0}. The associated 2-form
B =3B (x)dx’ Adx* =—egsin §d0 rd¢

is closed but not exact. This is easily recognized as a multiple of the volume on the 2-sphere S?,

f B =—-4m7eg.
SZ

Dynamics on sections [4]

The equations of motion of the charge-monopole system considered in the last section was first
considered in the context of quantum theory by Dirac [3] who showed that it entails the concept of
nonintegrable phases which in turn leads to the quantization of the product e.g. of charge and monopole
strength. Saha [3] pointed out that the conserved angular momentum of the charge-monopole system
has an intrinsic angular momentum of 3# which must be added to orbital angular momentum.

In the context of non-Abelian gauge theories accompanied by spontaneous symmetry breaking new
kinds of monopoles arise. In such theories, once the symmetry has broken down there arise distinct
sectors in which the asymptotic nonvanishing field configurations are topologically nonequivalent; and
in some of these there are long-range generalized magnetic fields reminiscent of the Dirac monopole.
But unlike the Dirac monopole which has a singularity at the origin, in these theories there is only a soft
field configuration which is persistent but nonsingular at the origin. It is this twin generalization of
non-Abelian symmetry groups and topologically inequivalent configurations that generate the richness
of the non-Abelian monopoles. Let us briefly survey the Dirac monopole both for its own sake as
illustrating a theory requiring nontrivial manifolds globally but also to set the scene for the non-Abelian
monopoles.

Given the equations of motion we mentioned above:

. _€§ ) .
mx; = = gpx*x' = e By (x) %

r3

with
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8 !
By (x)= 7 EiX

if we attempt to construct a vector potential W’(x) we find that no global solution exists for a W’ which
satisfies

By (x) = ;Wi (x)— . W;(x) .

If we denote by 3 the sphere S* we can define W™, on a contractible open set 3y which may be thought
of as the sphere S$* with a neighborhood of the South pole removed [4]. Equally well we can make a
different choice W*; defined on a contractible open set 3 with a neighborhood of the North pole being
removed for S°. In the region of overlap Xy N 3 the two vector potentials are connected by

i

W (x) = h7 () (WS (00— ) )

B (x) = B®y(x),
where hr(x) is a phase factor chosen to be

hT(x) = ei¢ s
where ¢ is the azimuthal angle. There is no global definition possible for Wj(x) as long as we stay with
the configuration space which is the direct product of the open set 0 < r < with S*>. We must construct
a fibre bundle on which the dynamics can be globally defined.

Now let us proceed to consider a test particle carrying internal symmetry (“isospin’’) charge I, which

is a vector in the space of the adjoint representation of the symmetry group H with generators T,. Then
the vector potential W,, field strength Gj, and the isospin I may be written in the form:

Wi(x)= W,(x) T, ; Gi(x)= Gup(x) T, 5
I=1T,;
G (x) = ;Wie(x) — 9 Wj(x) + ie[ Wj(x), Wi(x)].

The Wong equations of motion [6] are:

mi; = —e Tr(I Gy (x)) % 5
I =—iex; [Wy(x),1].

We may alter the description by a gauge transformation:
S i
Wi=g0x) (Wx) -~ ) 8(x);

G =8 '(x) Gi(x) g(x);
I'=g7'(x)Ig(x).
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Of course, given an external field Gj, the isospin I is not a constant but precesses according to the
Wong equations. But the isospin can be defined globally as long as the external gauge field configura-
tion is topologically trivial. But as soon as the fields have nontrivial topological properties (like a
monopole) the isospin cannot be globally defined. This is in contrast to the Dirac monopole for which
the equations of motion were global. The action of the “isospin’ group H is then not something globally
defined. We shall discuss this below in connection with color breaking by monopoles; but we see that as
far as classical theories are concerned we may work with the equations defined on the mutually
overlapping contractible sections 3y and Js. It could nevertheless be desirable to construct a formalism
where all quantities are defined globally. This is provided by the introduction of fibre bundles. Since the
field strength G is totally radial the vector potentials W have no radial components, though the angular
components have both radial and angular dependences. The well-defined but distinct Wy and W5 over
3\ and 3 related through h;(x) can be obtained by the specialization of a connection {2 on a principal
H-bundle over the base S* = 3 = 3 U 3. The locally defined potentials Wy, Wy arise by restricting the
global connection {2 to the sections 3y and 3. The precise form of 2 depends on the group H.

Fibre bundles and connections [7, 8]
As a specific example of such a connection we choose the transition function

hr(x)=e"*"

where T is a generator of the Lie algebra H. Then the fibre bundle B over the sphere S? is obtained
from the Cartesian product

B =HxSUQ)={(B, u)| BEH, u € SUQ)}
by introducing the equivalence relation
(B,u)~ ("B, ue*?), 0O=<a=<2m.
The product B equipped with this equivalence relation is the fibre bundle % = (B, u). The projection
m=RB->$
is defined by
7(B) =3 Tr(oussu™")=%.
For 3y define:
un(x) = exp(-3ios) - exp(-3i80) - exp(3igos) ;
and for 3:

us(x) = exp(—3i¢o) - exp(—3ibo>) - exp(—ligos).
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Note that uy is defined everywhere except at the South pole and us everywhere except at the North pole.
The global action of H on A is:

(B,Ue B->(BB',u)c 3.

The connection {2 should be defined over % rather than % and should transform under the global
action of H according to

O(BB',u)= B~ (B,u)B ~~B"'B';
4
e "B, u e ) = (B, u).

In addition to these requirements we wish to impose the condition of spherical symmetry appropriate to
a monopole:

(B, u)= (B, u'u), u'€SUQR).
Here u' is a rigid rotation independent of x. The solution [9] satisfying all these three conditions is
QB u)=--B'dB—-B 'TB L Tr(osu ' du).
e e
A global Lagrangian for the motion of a particle in the monopole field is given in terms of a global

connection {2 by:

.o,
$=%mx2+iTr<KB"l[B+ie (dtu)BD'

With the above choice for {2 the global Lagrangian is
F=imP+imrP$*+ i1 Tr(KB™'B)+ i Tr(KB™'TB) 3 Tr(osu"'4).

It can be shown that the correct equations of motion follow from this Lagrangian provided the isospin is
identified according to:

I=BKB™'.

Color breaking: Classical theory
In a non-Abelian monopole field there may be topological obstructions to the definition of the global
action of the group H on the non-Abelian charges of a particle moving in an H-monopole field. A global

definition of the action associates with each & € H and each £ € S* an element k(%, h) € H; such that

k(% h') k(% h) = k(%, h'h).
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Thus an isomorphism is established between H and a group H; at £. These various groups H; are all to
be subgroups of a grand group G. For convenience we shall assume that

k(x,h)=h, %= North pole.

In the section 3y we may consider a transformation in G dependent on £ such that
h— kn(%, k)= gn(2)" k(£ b) gn(%)

is an automorphism which is dependent on £. There is a similar automorphism
h—ks(%, h) = gs(£)™" k(% k) gs(%)

appropriate for 3. In the overlap zone 3y N 35 we have
kn(%, h) = h7'(£) ks(%, ) hr(%).

These transformations gy, gs are nonunique to a certain extent and this implies that A, (X) is also
nonunique:

hi(£) = hs'(£)7" hr(£) hn(E).

We could make the choice that the outer automorphisms of H form a discrete set; then since kn(X, A1) is
to vary smoothly with £ over 3y and gn(N) = ¢,

kn(N, h)=h.
Then by invoking the smoothness of kn(, &) it follows that A — kn(%, #) is an inner automorphism:
kn(%, h) = ha(£) h hy\(2).
We could, in turn, use this Ax(£) to change the choice of kn(X, /) so that
kn(X, k)= k(% h)=h.
This is true all over 3y. It remains for us to find a smooth gauge change over 3 such that
ks(X, h') ks(%, h) = ks(X, h'h)
and in the overlap zone 3y N g it satisfies the transition relation
ks(X, h)=hi{X)-h-hH{£)".

But the transition function fails to have a unique limit as the South pole is approached. Instead, by
suitable choice we hope to get
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hi{f)=>c(¢p)EH  as x-S.

The transition relation becomes
e(dp)he(d)'=h, heH.

So unless the closed curve ¢(¢), 0= ¢ <2 lies in the center of H the global action of H cannot be
defined. So if the monopole is nontrivial and H has a discrete center this action cannot be defined
globally. It is not only that this is not a symmetry of the theory, it cannot even be defined.

Color breaking: Quantum theory [9]

Even though most of the above discussion is couched in the language of classical systems we see that
this same impossibility of defining the global group H obtains in quantum theory. In this context we
recognize that for an Abelian monopole all transformations of H are globally realizable.

Since the impossibility of the global application of H depended on the lack of commutation with the
transition function h.(X), to this extent hr(£) defines the breakdown of the global group H. However it
must be pointed out that two very different transition functions can describe the same monopole sector
if

he(®) =€, hp(f)=e*"
are two transition functions such that
C(d’) = ei¢T . e—i¢T’

is a closed curve which can be shrunk to zero.
As an example consider the example suggested by application to particle physics:

H = [SUB)e X U)em)/Zs=U(3).

For the elementary monopole we could choose

o o O
(SR e B e

0
hTZCde); T:fl;"'/\g/\/gz 0
0

The commutant of T is
KT = SU(Z)C X U(l)YC X U(l)e.m.

where SU(2)c acts on the first two colors and Y is the corresponding color hypercharge. This would
certainly indicate color breaking of a definite kind. However an alternative choice of the transition
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function is

-2

00
hr =", T = 10
0 2

(==}

The curve €™ -e7'7* is homotopically trivial and hence A, and h;. define the same monopole.

However the globally definable transformations constitute the Abelian group
Kr=U1)xU@1)xU(1).
So the groups K; and K- need not be the same. The homotopic classification of monopoles is too crude
to tell us the full physics of symmetry breaking.
Another interesting example, again suggested by particle physics, is

H=[SUQ) X U()/Z, = U(Q).

The transition functions A, hs correspond to

10 0 2 0 0
T={0 0 0 {; =10 -1 0
00 -1 0 0 -1

It is easily verified that T and T’ describe the same non-Abelian monopole. In this case we can
construct h(£) as a 3 X 3 matrix function of (6, ¢) which satisfies

h©,¢)=¢; h(m, @)= hr (@) hr(d)".

In this case both K and K- are U(1) X U(1) but distinct actions.

One could ask: what if we disregarded the prohibition to extending H from 3y to all of S*? What
could possibly go wrong? What happens is that disallowed color transformations create configurations
with infinite energy. This happens because the illegal transformations create a §-function singularity in
the field strength at the South pole; and in turn, to an infinity in the total field energy. We must
recognize that the old and new field strengths are not gauge transformations of each other since they
differ by a 6-function at the South pole.

Similar results can be demonstrated for the energy of a quantum-mechanical particle in a color
monopole field.

Gauge automorphisms and canonical implementability

Having recognized the startling result that color symmetry could be broken in the presence of
non-Abelian monopoles we ought to be concerned with other symmetries including Lorentz invariance.
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We should also carefully distinguish between automorphisms that leave the relations unaltered in form
and genuine symmetries realized by canonical transformations. This we proceed to do.

Let us consider a theory involving gauge fields whose potentials are denoted by W, and matter fields
which we take to be spinor fields . The Lagrangian of the system in interaction and the equations of
motion are invariant under a large group G of automorphisms:

W,>hW,h™ '+ ho,h™";  y->D(h)y,

where D(h) is the matrix realization of the gauge group G on ¢. The transformation h(x) is required to
be smooth but otherwise unrestricted; it need not go to any specific limit as x goes to infinity.

Even in usual field theories not all automorphisms are canonically implementable: in quantum field
theory this means the impossibility of defining unitary operators generating such transformations while
in classical field theories this implies the impossibility of canonical transformations realizing the
automorphism. The canonically implementable transformations form a subgroup G of G. We may
consider this as the spontaneous breakdown of G to G”. Among G™ there is a subgroup G, which is
generated by the Gauss law operator

D-E+1],,

where E is the color electric field and J, is the color charge density. Since the Gauss law operator
vanishes on any physical state, on physical states the group Gy is trivial. We may therefore identify the
nontrivial group

G, = G(U)/Go

as the global symmetry of the theory. In QCD, for example, G, goes to unity at infinity while the
connected component G§” of G™ include transformations which go to any constant at infinity
independent of the angle along which we go to infinity. Then the physical group G§”/G is isomorphic
to the global color group which was the starting point of the gauge theory.

Following Hanson, Regge and Teitelboim [10] we recognize the need to smear the Gauss law
operator and consider objects like

g(A) = j Pr Tr(A(x) (D - E + J)(x))

to vanish on physical states. The test functions A(x) are arbitrary for finite x, but the asymptotic
properties of A (x) should be properly defined. We shall require that A (x) is to be so chosen that g(A) is
a differentiable functional of A(x) in the sense that

dg(A)=— jd3x Tr(E-DA).

This requires, in turn,
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lim f 407 Tr(A%-SE)=0.

r—>o

Such a requirement of differentiable functionals is necessary for the Poisson brackets to be properly
defined and to obtain the correct field equations from the action principle.
Along with g(A) we define also the closely related charge operator

QM) = f &*x Tr(MJ, - E - DM)

which differs from g(M) only by a surface term provided a partial integration can be done; otherwise
they are distinct. The allowed phase space functionals Q(M) generate the connected component G§* of
the implementable group G

Gauge theories: Standard sector

For orientation let us first consider an Abelian gauge theory. If the charge and current distributions
are of compact support the r~2 piece of both electric and magnetic fields are odd functions of £ so that

E= (X)) +01/r)
B=bOR)/P +0O(1/P)
A= aP@)r + dix(x)+ O1/P)
where ¢, b are odd and @ even in £ Then the allowed sets of A(x) are of the form
A = AOF) + O(Ur)
while for M(x) it is
M=B8+A9)+0(/r), B =constant.

The quotient group G§”/G{ = U(1) with generators

o®B)=8 [ exi.

Among the gauge transformations only the odd part of y(x) can be changed by the acceptable gauge
transformations. The gauge transformations including x”(£) are spontaneously broken.
Similar considerations apply for the nonmonopole sectors of non-Abelian gauge theories. We need
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L h(x) €O@) hix) 1+o( )

|'—‘ “NI

h(x) BORE) h(x) 1+o< )

I - N

~h(0) 6 h(x) "+ h(x) 3 h(x) ' +O ( ! )
[af7(%), ai(#)] = 0
with A(x) unrestricted at infinity. Differentiability of the Gauss law functional demands
A(x)=h(x) ACE) h(x)  +O1/r)
and
[ACF), AOF)] = AD(%)
with any odd A“”. On M(x) the requirement is
M(x)= h(x) Nh(x)" + O(l/r)

with N any constant Lie algebra element.

Monopole sector of gauge theory

When monopole sectors are considered we have to reanalyze the situation in further detail: so we
restrict considerations to the Georgi—Glashow model. The spherically symmetric connection furnishes
the vector potential

W=37-%8r-2+0(1/r7).

In this case the r 2 terms in E and B are even and the leading term in W odd in contrast to the
nonmonopole sector,

E= % h(x) e (@) h(x) 1+ O (%) ;
B= % h(x) B @)h(x) "+ 0 (%) ;

A= % h(x)a@ @) h(x) '+ h(x)d h(x)".



E.C.G. Sudarshan, Unfolding, fibre bundles, color breaking and gauge invariance 107
The test functions A(x) and M(x) are required to be

A(x)=h(x) APRE) h(x)"' +O(1/r);
M(x)= h(x) (@™ + aT(£)) h(x)" + O(1/r).

Question of Lorentz invariance

Let us now examine the question of Lorentz invariance. Due to the “mixing of spin and isospin” the
rotation generators contain color operators. The rotation and boost generators are respectively the
integral of the Poynting vector and the moment of the energy density. The Poisson bracket of these
generators do not close amongst themselves but contain supplementary terms:

{Joo Ki} = €Ki + 8(xi)

where y,,; depends on the fields. Such terms arise in multiple Poisson brackets also. If such additional
term had y which were among the allowed test functions for the Gauss law A then these g(y) would
vanish on physical configurations and consequently we would have implemented Lorentz invariance.
We can calculate

{Kj7 {Kk7 ]I}} = gklnsjnm-]m + g(Xjkl) .

In the monopole sector yj; do not vanish at infinity. So if we restrict our attention to only a Gauss law
form in which g(A) reduce to unity at infinity, we would be forced to conclude that Lorentz invariance
breaks in the presence of monopoles. So it is essential that we consider a more stringent Gauss law
which permits A which do not vanish at infinity.

There is much work needed to clarify our notion of invariances and transformations within gauge
field theories and more generally with dynamical systems with infinite number of degrees of freedom.
Physics has moved into a phase where topologies and geometrical considerations are playing a crucial
role. The distinction of canonically implementable transformations and automorphisms is an essential
physical consideration.

The research reported in this paper is based on collaboration with A.P. Balachandran, G. Marmo, N.
Mukunda and J.S. Nilsson. Some of the results have not been reported elsewhere yet. I thank Giuseppe
Marmo for his interest and assistance in the preparation of this paper. This work was supported by the
Department of Energy under Grant No. DE-FG05-85ER40200 at The University of Texas at Austin.
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