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Using the formalism of dynamical maps it is shown that if a quantum measurement process is to be described in terms of a non-
negative phase-space distribution obtained by smoothing the Wigner distribution of the quantum state, then the smoothing kernel
characterizing the measuring apparatus cannot be an arbitrary Wigner distribution.

The Wigner distribution method provides a phase-
space description of quantum mechanics which
resembles in several aspects the classical description
[1]. It consists of associating with a quantum state
described by a density matrjx 5 a c-number distribu-
tion function W(q, p) over the classical phase space
through a well—deﬁned\procedure..Then if hermitian
operators are associated with classical dynamical
variables in accordance with the Weyl correspon-
dence [2], the expectation value of a hermitian oper-
ator O in a state j is given exactly by the phase-space
average of the corresponding classical dynamical
variable O(q, p) with W{(4q, p) as the weight function:

Tr(60) = | [dq.dp W4 1)O(, ) . 0

The expression on the right-hand side of (1) is for-
mally identical to the corresponding classical expres-
sion. However, as is well known, W(qg, p) is not a
true probability distribution over the phase space,
since it is not pointwise nonnegative in general. In
order to make this expression for averages look truly
classical-like, one goes from the Wigner distribution
W(q, p) to a corresponding “smoothed Wigner dis-
tribution” W,(q, p) which is nonnegative over the
entire phase space, or equivalently alters the corre-
spondence rule suitably [3-12]. The obvious way to
obtain such a nonnegative distribution, and the one
invariably used, is to convolve the Wigner distribu-
tion of the state with another Wigner distribution
W.(q, p); the convolution of any two Wigner distri-
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butions results in a phase-space function which is
pointwise nonnegative. The convolution process itself
is then understood to be the result of the coarse
graining which is invariably affected by the measur-
ing apparatus, or present in any semiclassical
description of quantum processes.

The purpose of this letter is to show that this
smoothing procedure can be profitably interpreted as
a dynamical map [ 13-17]. This interpretation leads
in a natural way to the following important question:
can an arbitrary Wigner distribution be used as the
smoothing kernel W, (g, p)? We show that the answer
to this question is in the negative.

We consider a system with one degree of freedom;
generalization to many degrees of freedom is
straightforward. Further, we choose units such that
Ai=1. The Wigner distribution is related to the den-
sity matrix through the following invertible
transformation:

1 )
W(q,p)=£jda exp(iop)

X {q—1iolplg+io) . (2)

Since p is hermitian, has unit trace, and is nonnega-
tive, one deduces from (2)

W(q,p) =W(q,p) ,
Te(5)= | [daap Wia.p)=1,

1160 = [ [dadp W@ W@ p>0, 3
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where /' is an arbitrary density matrix and W' (q, p)
is its Wigner distribution.

It is convenient to combine the real g, p into a

complex quantity z=(g+ ip)/\/i and write 2 W(q.
p)asw(z).
Thus [[dg dp/2n will be denoted [d2z/m as usual
[18]. Further, for convenience of formal manipula-
tions we will rewrite (2) in terms of the basic her-
mitian operators £(z) of the Weyl correspondence
[19]:

2
2= S ezt 0B

E=(1+i0)//2;
D(&) =exp(&at =& a), a=(4+ip)//2. (4)

Among the many interesting properties of £2(z) and
D(z) we note only the following:

Tr[R(z)2(&)]=nd(z—-&) ,
D& R(2)D(E)=2(z=-&) . (5)
In terms of £(z) we have

w(z)=21W(q, p)=Tr[pQ(2)] .

2
ﬁ:f%w(z)g(z) . (6)

The fact that the Wigner distribution cannot be
pointwise nonnegative for every state can be seen
most easily by taking in (3) a pair of orthogonal
states. In fact the only pure states for which the Wig-
ner distribution does not assume a negative value
anywhere in the phase space turn out to be those with
gaussian wavefunctions [20,21].

As already noted, the smoothed Wigner distribu-
tion is defined as the convolution of the Wigner dis-
tribution under consideration using as kernel a
Wigner distribution w,(z) characteristics of the
measuring apparatus:

2
0.(2)= [ oz

2
EJdTé 0(z2—E)w (&) . (7)
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For any two Wigner distributions w(z) and w(z)
the smoothed distribution w,(z) is a pointwise non-
negative function. This becomes transparent if we
rewrite (7) in the form

w (2)=Tr[paD(z) 2pPD(z)"]

=Tr[pD(z) #p. ?D(z)'] . (8)

where 2 is the parity operator. That (7) and (8) are
equivalent can be checked by substituting for g, and
p from (6) and making use of (5). For instance, we
have

d?¢&d?
:J sz (UA(f')Tr[Q(f’)Q(Z_é)]
= d—;é‘w.A(zwi)w(é), (9)

Since convolution with w,(z) produces a linear
map w(z) - w,(z) and in view of the linearity of the
defining relationship between g and w(z) it follows
that it induces a linear map on the density matrix
itself. It is natural to ask if this map is a dynamical
map.

Dynamical maps are the most general linear trans-
formations *' on the vector space of hermitian oper-
ators on state vectors which preserve the hermiticity,
unit trace, and nonnegativity properties of the den-
sity matrices and hence any theory of measurement
or evolution (including the irreversible ones) should
necessarily conform to the framework of dynamical
maps.

Any dynamical map can be brought to the canoni-
cal form [13,14]

p—p =Y n(e)l(a)pl(a)’ (10)

where n(a) are a set of scalars and {(«) a set of
operators on the Hilbert space # of state vectors. The
requirement that for every density matrix p, o' given
by (10) be a density matrix is equivalent to the fol-
lowing conditions on the set {n( «), f(a)} character-
izing the map:

‘! If the density matrices are n X » matrices, say, then the dynam-
ical maps are n?x n° matrices.
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n(a) =n(a),

Sn(a)l(a)tl(a)=1,

o

Sy [ <wll(a) |2z 0,

Viwy, lg>et . 1)

The real scalars 7{a) need not be all positive. As an
important example of dynamical maps for which the
n(a) are not all positive, we cite the map p—p7,
where T is the matrix transpose of p [15]. Those
maps for which all the n(«) are positive are said to
be “completely positive”. Given a linear map on the
density matrices, it is the last condition in (11) which
is sometimes difficult to test. But if the map is com-
pletely positive then the last condition is automati-
cally met. As a last remark on (11), we note that the
more familiar hamiltonian evolution trivially fits into
this framework with only one 7(a) nonzero (in fact
equal to unity) and the corresponding £ () unitary.
To interpret the smgothing procedure within the
framework of dynamical maps, first rewrite (7) in
terms of density matrices using (5) and (6):
. d?z

b= 0202

2
=[S wu@p@mper (12)

b8

Now (12) has the same form as (10), and we readily
identify

n(a)-»wa(&), {a)-D(&),

d2¢
s[5
Clearly, the first two conditions in (11) are satisfied
for any Wigner distribution w4 (&). The third con-

dition now reads

2
[Ef wa@1cwB@Ie 1220,

Viv), |9>est. (14)

If the Wigner distribution w,(z) is pointwise non-
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negative, then (14) is trivially satisfied and the
smoothing process is a dynamical map, in fact a
completely positive one. This is the case when w4 (2)
is gaussian. However, (14) is not satisfied by every
Wigner distribution w,(z) implying that the
smoothing process with an arbitrary Wigner distri-
bution as kernel is not a dynamical map in general.
For instance if g5 = | 1) (1] the first excited state of
an oscillator of unit mass and unit angular fre-
quency, the corresponding Wigner distribution
wa(2),1s

wa(2)=2(4|27| -1) exp(-2]z|?) . (15)

Now choosing |w)>=|¢>=|1>, the factor
(w|D(z)|¢> in (14) can be evaluated to be
w1D(z) 1) =11D(2) |1}

=(1—|z|?) exp(—|z|?/2). (16)

Finally, using (15) and (16) in (14) we deduce

2
[ ou@1win@ e

n
2
=[5 24181091814 +6112 - 1)

X exp(—3|&|2)=-2/27, (17)

showing that in this case (14) is violated. Thus, the
smoothing process with the kernel

wa(z)=2(4|z]*-1) exp(-2|z|?)

is not a dynamical map.

If the smoothing kernel is such that the smoothing
process is not a dynamical map, then there always
exist Wigner distributions whose smoothed distri-
bution (though pointwise nonnegative) will not be
Wigner distributions. This means one can find in such
cases nonnegative operators O whose averages as
computed using the nonnegative smoothed distrib-
tution will be negative:

2

030, dezws(z)O(z)<0. (18)
Since this is an undesirable situation, one should
demand of the smoothing kernel the property that its

convolution with any Wigner distribution is again a
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Wigner distribution so that the smoothing process
itself will be a dynamical map. While the often used
gaussian kernel indeed effects a dynamical map, the
set of all Wigner distributions which qualify to be
used as smoothing kernel remains to be classified. We
shall return to an analysis of this and related prob-
lems in a subsequent publication.

We wish to thank Dr. S.K. Basu for acquainting us
with the work of Kuryshkin and himself and stimu-
lating our interest in this problem.
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