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GAUSSIAN WIGNER DISTRIBUTIONS: A COMPLETE CHARACTERIZATION
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Necessary and sufficient conditions on a gaussian phase space distribution to be a bona fide Wigner distribution, for any num-
ber of degrees of freedom, are derived. Williamson’s theorem on the normal forms of positive matrices under symplectic transfor-
mations is used in a fundamental way.

The following question arises in the analysis of problems of interest in both quantum mechanics and optics:
if a hermitian operator I acting on the Hilbert space # =L?(R") has a configuration space kernel of the gaus-
sian form:

qlf g >=T(q;q0)

=(2/n)"*(det L)"* exp[ —q"Lg—q'"Lq' — }(q—q' )" M(qg—q') +3i(q—¢') " K(g+¢)], (1)

what are the necessary and sufficient conditions on L, M and K to ensure that I” is positive semidefinite? Here
¢ and ¢’ are n-component column vectors; L and M are real symmetric » X n matrices, while K is a real nx#n
matrix. It is easy to see that the expression in the exponent is the most general one quadratic in ¢ and ¢’, and
invariant under complex conjugation followed by interchange of ¢ and ¢’. The number of independent real
parameters in this family of gaussian kernels is n(2n4 1), the same as the number of parameters in the group
Sp(2n, R).

In quantum mechanics, the density matrix of an #-dimensional oscillator system in thermal equilibrium and
its transforms under unitary Sp(2#, R) action, has the above gaussian form. In optics, the cross-spectral density
of gaussian Schell-model fields [1,2], which have attracted great interest in recent studies on radiometry of
partially coherent sources [ 3], have precisely this form.

The purpose of this letter is to answer the question posed in the opening paragraph. For this it is useful to
compute the Moyal transform W(gq; p) of the kernel (1). The necessary and sufficient condition for its existence
is that L+ M be positive definite, and then [4]
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W(gp)=(2rn)"" Jd"q’ I'(q—1q';q+1q") exp(ipTq’)
RrR7

=n-"[det L/det(L+M)]"?exp[ —2¢"Lg— i (p—Kq)"(L+ M) '(p—Kq)]. (2)

I'(q; q') being a bona fide density matrix (cross-spectral density) corresponds to W(g; p) being a Wigner dis-
tribution (Wolf function) [5,6]. W(qg; p) is more conveniently expressed by arranging ¢ and p into a 2n-com-
ponent real column vector Q:

o-()

and defining a real symmetric 2nX 2n matrix G:

G= (;T g) A=2L+LKT(L+M)~'K, B=4(L+M)~', C=—iK"(L+M)"". (4)

Given the properties of L, M and K, it can be seen that there are no algebraic relations on the elements of G
beyond symmetry. The Moyal transform now has the compact gaussian form

W(g;p)=W(Q)=r""(detG)"” exp(—- Q" GQ). (5)

Egs. (4) can be inverted to express L, M, K in terms of 4, B, C, consistent with the invertibility of the Moyal
transform. Qur question can now be phrased in this form: What are the necessary and sufficient conditions
on the parameter matrix G so that the gaussian phase-space distribution (5) will be a Wigner distribution? '

A density matrix must be hermitian, have unit trace, and be positive semidefinite. Hermiticity of " has been
ensured through reality of L, M and K. The kernel (1) is traceable if and only if L is positive definite, L > 0;
then our normalisation factor ensures that I” has unit trace. It is the positive semidefiniteness property which
is somewhat subtle, so we implement it in two stages. First we derive a necessary condition. Positive semi-
definiteness of I* implies the existence of a unique hermitian positive semidefinite square root I" /2. Applying
the Schwarz inequality to the vectors "2 |g), [''?|¢' ) gives

\T'(g:¢) 1> < (¢ (q59") (6)
which for the gaussian kernel (1) reads

exp[ —(¢—¢')"M(qg—¢)]<! forallqg, ¢,
ie.,

M=0. (7)

The conditions on L and M so far are L>0, M >0, L+M> 0, with the first two clearly ensuring the third. If
we write G in the factored form

1 0\ /2L 0 1 0
G=<—K 11) (o %(L+M)—l)(—1< 11)’ ®)

we see that L>0, L+M>0 imply, and are implied by, G being positive definite. Thus a necessary condition
for I’ to be a density matrix or W(Q) a Wigner distribution is

G>0. (9

#! See ref. [ 7], and in particular the discussion following eq. (8.15) therein.
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To arrive at a set of sufficient conditions we analyse the behaviour of " under unitary Sp(2n, R) action.
The defining representation of this group consists of real 2z X 2n matrices .S obeying

sTa5=8,  f=io:xtua= 0y 7). (10)

This form of B corresponds to arranging all the g first, and then all the p, in the column vector Q in eq. (3).
Sp(2n, R) is the group of linear transformations which leave invariant the fundamental commutators among
n canonical pairs of operators. The generators in the defining representation are of the form fG where the G
are real symmetric matrices. Along with S, both S—! and ST also belong to Sp(2#, R). The unitary action of
Sp(2n, R) on # is via operators U(.S) whose generators are symmetric hermitian quadratic expressions in the
canonical operators, and on I" the action is by conjugation:

S L' =U8)LUS)~". (11)

We see that the defining properties of density matrices are Sp(2n, R) invariant. In particular, if I is positive
semidefinite, so is I’. The change in the Moyal transform accompanying (11) is easier to handle:

S W(Q)-W (Q)=W(S~'Q). (12)

For the gaussian expression (35) this means a symmetric transformation on G and a similarity transformation
on BG:

G-G' =(S-)TGS~', BG =SBGS-'. (13)

Condition (9) on G is clearly preserved by Sp(2#, R).

Now we make use of a fundamental theorem due to Williamson [8]. It states that the normal form G, of
a real symmetric positive definite matrix G under the Sp(2#», R) transformation (13) is diagonal with positive
elements. The normal form can be written as

K,
K, 0

Go= (14)

K,

where (Go) v+ mn+m=(Go)mm for m=1, 2, ..., n has been achieved by using the fact that scaling each g,, by a
positive factor y,, and each p,, by the reciprocal y;;' is an Sp(2#n, R) transformation. Given I” with parameter
matrix G, it is positive semidefinite if and only if " corresponding to the normal form G, is positive semi-
definite. In the normal form this property is easily tested.

For the matrix G, of (14), K,=0 while

K, 0
a=B=| | (15)
0 .K,,
so that
My=4 diag(K7'—-K,,K5' - K>, ... K;' -K,). (16)
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The necessary condition M, >0, eq. (7), restricts the Ks

0<Km<1a m=1,2,...,n. (17)

It now turns out that these restrictions on the diagonal elements in the normal form G, of G are also sufficient
to ensure that [, and hence I, be positive semidefinite. The kernel of [, is

FO(q’ ql):':exD <—% Zl [Krn(q3n+qr/rlz)+%(K;tl _Km)(q”t—qr,n)z]) s (18)
and it is clear that

wilolyy= jd"q d"q w(@)*I' (¢, ¢')w(q') >0, (19)

for every w(g)eL*(R") if the conditions (17) hold. Thus given that G> 0, the inequalities (17) are the nec-
essary and sufficient conditions for ”;, and hence I to be positive semidefinite, or equivalently for W(Q) to
be a Wigner distribution,

It is possible to express the conditions (17) on G directly without having to bring it to its normal form. To
show this and make explicit their Sp(2#n, R) invariance, we use the fact that §G changes by a similarity trans-
formation (13) under this group. Therefore the traces of powers of §G are Sp(2n, R) invariants, and can be
evaluated by going to the normal form. Odd powers give vanishing trace, and for even powers we define the
Sp(2n, R) invariants

— ! n
S/Z(——zl—)‘Tr(ﬁG)Z[= Z K2 1=1,2,..n. (20)
m=1

If we now construct the nth degree polynomial equation
PO =y +coy" ' +oy i+ 4, yte, =0, (21)

where the Sp(2#n, R) invariant coefficients are given recursively by
1 m—1
C,,,:—E(Sm"f' Z CrSm—r)a m=1,2, v 1, (22)
r=1

then by Bocher’s theorem [9] the K2, are the roots of this equation. From positivity of G follows that of each
K, so the bound K,, <1 is the same as K2, < 1. The necessary and sufficient conditions for all the roots of (21)
to be bounded above by unity are

n—-1
P, (290) (S22 o )

Necessity is seen by factorizing P(y) as

P(y)=(y—K)(y—K3)..(y—K3), (24)
and sufficiency by expanding P(y) about y=1. In detail the inequalities (23) are

l4+¢ +c+...+¢, 20,

n+(n—1)c,+(n—-2)e; +..+2¢,_>+c,_ =0,

n(n—1)+(n—-1)y(n-=2)c;, +...4+6¢,_3+2¢,_, =0,

m+(n—1)l¢, 20. (25)
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These are the Sp(2n, R) invariant and direct expression of the conditions (17). Our results can be stated as
the following

Theorem. The necessary and sufficient conditions for a gaussian phase space distribution to be a Wigner
distribution, or equivalently for a gaussian kernel to represent a density matrix, are that the parameter matrix
G be positive definite and that the Sp(2r, R) invariant traces of powers of AG satisfy the inequalities (25).

Quantum mechanical density matrices and optical cross-spectral densities have similar defining properties
of hermiticity and positive semidefiniteness, and differ only in that the former have unit, and the latter finite,
trace. Therefore our theorem applies to the optical case as well with the words “density matrix” and “Wigner
distribution” replaced by “cross-spectral density” and “Wolf function” respectively.

Finally we note the nontrivial role played by the antisymmetric part of the phase matrix K in kernel (1) in
the context of the positive semidefiniteness of this kernel. (The symmetric part of X is irrelevant for this prop-
erty.) This can be seen already from the last inequality (25) which applies for all n>1:

—C Ln. (26)
When expressed in terms of L, M, K this reads:
Tr L(L+M)'+iTr NTN<n, N=_NT={(L+ M)~ V3 (K—K")(L+M)~ "2, (27)

It follows that the kernel ceases to be positive semidefinite if the antisymmetric part of K is “large compared
to M™. In particular if M=0, the positive semidefiniteness of I" cannot tolerate any nonzero antisymmetric
part in K at all. The remaining inequalities in (25) impose further restrictions on K— K7,

We conclude with the following observation. In the general case a real phase space distribution W(q; p) is
a Wigner distribution if and only if the hermitian operator I" whose configuration space kernel I"(g; q') com-
puted through the inverse of the Wigner-Moyal transform

I'g;q)= J‘ d"p W(3(q+q'),p) exp[—ip" (¢’ —q)] (28)

R?

is a bona fide quantum mechanical density matrix. In practice, it is the nonnegativity requirement on I that
is formidable to test, in the general case. Formally, this requirement can be rephrased in several equivalent
forms. For example, I" will be nonnegative if and only if Te(I' I ») =0 for every pure state density operator
r > Of, equivalently, if the superposition integral of W with every pure state Wigner distribution W, is
nonnegative:

[ aapwiamw, >0 (29)
R2n

Another equivalent form is the KLM condition which requires the symplectic Fourier transform of W to be
of #-positive type [ 10]. We believe that none of these formal statements overcomes, in any definitive way, the
basic difficulty involved in testing the nonnegativeness of a given . In the last KLM form, for example, we
have to test the nonnegativity of an infinite sequence of matrices of increasing order constructed from the sym-
plectic Fourier transform. What we have shown in this paper is that given a gaussian distribution in a 2n-dimen-
sional phase space we can answer the question of whether it is a bona fide Wigner distribution or not by testing
Just n simple scalar inequalities, thus giving a characterization of gaussian Wigner distributions. Clearly our
conditions (25) give a much simpler algorithm than the KLM form. It has been suggested by a reviewer that
it may be an interesting problem to derive our n scalar conditions in (25) directly from the infinite sequence
of KLM matrix conditions, for the gaussian case. We shall return to this problem elsewhere.
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