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R. SIMON 
Institute of  Mathematical Sciences, Madras 600 113. India 

N. M U K U N D A  I 
Centre for Theoretical Studies, Indian Institute of  Science, Bangalore 560 012, India 

and 

E.C.G. S U D A R S H A N  
Center jor Particle Theory, University of Texas, Austin, TX 78712, USA 

Received 7 September 1987 

The beam width and the angular spread of a partially coherent beam, and their transformation as the beam passes through Sp( 2, 
R) first order optical systems are studied using the method of generalized rays. A generalized abcd-law which governs this trans- 
formation is derived. Kogelnik's abcd-law for coherent gaussian beams and its later generalization to gaussian Schell-model beams 
are shown to be special cases of this law. 

1. Introduction 

The notion of  generalized rays [ 1 ] was originally 
introduced in an at tempt to clarify the relationship 
between electrodynamics and the radiative transfer 
theory [2]. Subsequently, this notion has developed 
into a technique which is o f  considerable advantage 
in handling beam propagation problems [ 3-7 ]. 

The generalized rays give an exact (not  a short 
wavelength limit) ray picture of  wave optics includ- 
ing the associated interference and diffraction phe- 
nomena [ 1 ]. Thus, it is not surprising that these rays 
have attributes unfamiliar to the rays of  the phe- 
nomenological radiative transfer theory [ 8 ]. This is 
reminescent o f  the classical-looking phase space de- 
scription o f  quantum mechanics using, say, the Wig- 
net  distribution function wherein, for example, the 
phase space density need not be pointwise nonne- 
gative in general [ 9 ]. For the purpose of  the present 
paper, the most  attractive feature o f  generalized rays 
is that they transform in an extremely simple way 
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under paraxial free propagation and under action of  
first order systems [3,4]. 

Various aspects of  first order systems have been 
studied by several authors [ 10-13 ]. The first order 
systems correspond to the group Sp(2, R) = SL(2, 
R) in the axially symmetric case, and to Sp(4, R) in 
the more general anisotropic case [10,11]. In geo- 
metrical ray optics a first order system is described 
by a numerical symplectic matrix belonging to the 
group Sp(2, R) or Sp(4, R) as the case may be, the 
matrix itself acting on the position and direction of  
the ray arranged as a column [ 14]. In wave optics 
the first order system acts through the generalized 
Huyghens integral [ 15 ] which forms the metaplectic 
representation of  the symplectic group [ 11 ]. In this 
connection it is useful to note that the action of  first 
order systems in wave (ray) optics is formally iden- 
tical to the evolution under quadratic hamiltonians 
in quantum (classical) mechanics. Free paraxial 
propagation and action of  aberration-free thin lenses 
are examples o f  first order systems. Elsewhere [10] 
we have shown that every Sp(2, R) first order sys- 
tem, including the inverse of  free propagation, can 
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be synthesised with atmost three thin lenses sepa- 
rated by free propagation sections. 

A problem of much practical interest is the trans- 
formation of (coherent) gaussian laser beams as they 
pass through first order systems. This problem was 
first studied by Kogelnik and the solution finds a 
compact expression in the abcd-law [16]. 

Gaussian Schell-model (GSM) beams are gener- 
alization of coherent gaussian beams. These beams 
have become an important class of model beams in 
recent studies on the radiometry of partially coher- 
ent sources [ 17 ]. We have analysed, using general- 
ized rays, the behaviour of these beams under the 
action of first order systems [4 ]. This analysis led to 
a convenient geometrical picture wherein GSM 
beams are represented by time-like vectors with po- 
sitive time component in a fictitious 2 + 1 dimen- 
sional Minkowski space with the first order systems 
acting as Lorentz transformations in this space. A 
generalization of Kogelnik's abcd-law to the partially 
coherent GSM beams was derived as a simple con- 
sequence of this geometric picture ~J. Further gen- 
eralization to anisotropic gaussian Schell-model 
(AGSM) beams has also been derived [6,19]. 

In the present paper we analyse the beam width 
and the angular spread of a general partially coher- 
ent beam, and their transformation under the action 
of Sp(2, R) first order systems using the method of 
generalized rays. A generalized abcd-law which gov- 
erns this transformation is derived. Kogelnik's orig- 
inal abcd-law [ 16 ] and its generalization in ref. [ 4] 
to GSM beams are shown to be special cases of this 
law. 

We will assume that the radiation field under con- 
sideration is described by a stationary ensemble [ 20]. 
This assumption is satisfied in most practical situ- 
ations. As a consequence of stationarity, the field at 
two different frequencies do not interfere (they are 
mutually uncorrelated). Hence the entire analysis can 
be done, without loss of generality, for one frequency 
at a time. It is understood that the analysis in the fol- 
lowing is for one such arbitrary frequency, but the 
frequency ~o and the associated wave number k will 
be suppressed. 

~t Subsequently we have rederived the abcd-law for gaussian 
Schell-model beams on the basis of Wolf's new theory in ref. 
[18]. 

2. Beam width, angular spread and first order 
systems 

We will assume that the beam is propagating about 
the z-direction. Then x =  (x, y) is the position vari- 
able in any transverse plane z=  constant. We will 
concentrate on the field distribution in various 
transverse planes. It is advantageous to interpret the 
propagation process itself as a linear map which 
transform q/m (x), the field distribution in the plane 
z=Zin to ~Uout(x), the field distribution in the plane 

Z=Zout. 
For stationary beams, it is convenient to represent 

the field distribution in a transverse plane by the 
cross-spectral density/'z(x~, x2). For brevity, we will 
often suppress the subscript z and write/ '(Xl, x2) in 
place of F_.(x~, x2). If  the field is coherent, then 

F(x~,x2) =~(x,)  ~(x2)* (2.1) 

for some function ~(x). That is, /" is a projection 
operator except for a multiplicative constant 
tr(/') =fdZx/'(x, x). In the more general case it fol- 
lows from Wolf's new theory [21] that F can be 
written as a convex combination (linear combina- 
tion with positive coefficients) of such projection 
operators. We have 

/ ' (  X I ' x 2 ) =  E An ~ On(Xl ) ~ n(X2)* ' (2 .2)  
n 

where ~0n(x) and 2, are the eigenfunctions and ei- 
genvalues o f / ' .  

Given the cross-spectral density, the density of 
generalized rays is given by the Wolf function [ 4] 
W(x, s) which is nothing but the Wigner-Moyal 
transform [22] o f / ' :  

W(X, $) ---- [k2/(2~z) 2] f d2x , 

×/ ' (x -x ' /2 ,  x+x'/2) exp(iks-x') . (2.3) 

W(x, s) gives the strength of the generalized pencil 
with position (x, z) and direction (s, s3= (1 -s.s)1/2) 
in the transverse plane under consideration [ 4 ]. The 
Wolf function is real as a consequence of the her- 
miticity of F(x~, x2), and has all the information 
contained in it. This follows by noting that the trans- 
formation (2.3) is invertible: 
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f w(x  ) F(x~,x2)= d 2 s  \ 2 ,s 

X exp[ - iks. (x2 -x~ )] . (2.4) 

The total irradiance in the given transverse plane is 

A= f d2xF(x ,x)= f f d 2 x d 2 s  W ( x , $ )  . (2.5) 

For any quantity f(x) it is easily seen that the av- 
erage value ( f ( x ) )  is 

( f (x ) )  =A -'  j- d2xf(x) F(x, x) 

To concentrate on the essentials of the problem 
under consideration, we will restrict attention hence- 
forth to beam fields which are invariant under ro- 
tation about the z-axis (the beam axis). For such 
fields it is clear that W(x, s) depends on x and s only 
through the rotationally invariant combinations 
x 2 =x.x, s2=s.s and x.s. As one consequence of this 
we have from (2.5) ( x ) = 0 ,  and hence the square 
of the beam width is given by the second moment 
(x  2) of x: 

( x 2 ) = A  1 f f d2xd2sx2 W(x,s) .  (2.7) 

For the same reason ( s )  =0,  and a measure of the 
square of the angular spread is given by 

( $ 2 ) = A 1  j j d2xd2s$ 2 W(x ,$) .  (2.8) 

We will need to consider in the sequel also the av- 
erage value of x.s: 

( x . s ) = ( s . x )  

j d2xd2sx's W(x,s) . (2.9) 

This quantity represents the position-direction cor- 
relation as shown by Davis and Heller [23]. 

It is useful to combine x and s into a two-element 
column vector 

,210, 

so that the Wolf function W(x, s) can be written as 
W(Q). Also we will arrange (x2),  (s 2) and (x .s )  
into a 2 × 2 real symmetric variance matrix V: 

V = ( ( x  2 ) (x's) ']  
\ ( s ' x )  ( s2 )  j = ( Q Q T ) .  

(2.11) 

it is clear that V is a positive definite matrix. With 
the aid of V, the three equations (2.7) - (2.9) can be 
combined into a single compact equation: 

V=A ' j d4Q (QQV) W(Q). (2.12) 

This way of writing these equations will turn out to 
be useful later on. 

We turn our attention now to the action of first 
order systems on arbitrary partially coherent beams. 
Every first order system is represented by an asso- 
ciated 2 × 2 real ray transfer matrix St  Sp(2, R). We 
recall that a 2 X 2 real matrix S belongs to Sp (2, R) 
if and only if 

SKST=K, K= (_01 10). (2.13) 

This condition is equivalent to 

Thus Sp(2, R) is identical to SL(2, R), though Sp(2n, 
R) is a proper subgroup of SL(2n, R) for n>~2. Free 
paraxial propagation through distance D, action of 
thin lens with focal lengthf and linear magnifier with 
magnification strength m are examples of first order 
systems and have, respectively, the following Sp(2, 
R) matrices representing them: 

,,m,--(o ° )m 
A first order system S acts on the Wolf function in 

a simple way [ 4 ]: 

W( Q)-~ W'( Q) = w( s -~ Q). (2.16) 

The output Wolf function at the phase space point 
Q is the input Wolf function at the point S -  ~Q. In 
other words, the generalized rays in a first order sys- 
tem follow the same trajectories as the rays of geo- 
metrical optics: 

Q~Q' =SQ. (2.17) 
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Since det S =  1, it follows from (2.5) that the total 
irradiance A is invariant for every beam under the 
action of first order systems: 

A--.A'= f d4O w ' ( o )  

= f d4Q W(S -~Q) =A.  (2.18) 
d 

We wish to find the transformation properties of  
the beam width and the angular spread under the ac- 
tion of first order systems. This is most easily done 
through consideration of the transformation prop- 
erties of the variance matrix V. From (2.12), (2.16) 
and (2.18) we have 

V--,V'=A-'  f d4Q(QQ x) w(S-1Q) 

f d4QS(QQ T) s r W ( Q ) ,  (2.19) = m - I  
d 

where the fact that det S =  1 was used. Thus 

~ = S V S  v . (2.20) 

The effect of a first order system is to take the var- 
iance matrix Vinto a new variance V' =SVS v. Since 
V is symmetric positive definite, so is also V'. 

In the following section we will use this transfor- 
mation law for the variance matrix to derive a gen- 
eralized abcd-law. It is appropriate to make, however, 
the following observations here: 

We were originally interested in the transforma- 
tion properties of the beam width and the angular 
width. But now we find that the propagation law for 
these quantities necessarily involves also the off-di- 
agonal correlation term V12= V21= (x . s ) .  This is 
analogous to the familiar situation where (at optical 
frequencies in particular) one's interest is in the di- 
agonal elements of the two-point function which cor- 
responds to the intensity distribution. Yet, the 
propagation law for intensity involves the full two- 
point function, including its off-diagonal elements 
[20]. 

It is instructive to see how the various elements of  
Vcan be measured using a profile detector which can 
measure only the beam width VI 1. First, note that 
scaled Fourier transformers SF(C) [it is easier to 
construct optical Fourier transformers with c~  1 ] are 
Sp(2, R) systems with ray transfer matrix 

Now pass the beam through SF(C). The transformed 
variance matrix can be computed from (2.20), and 
we have 

V'I I = C 2  V22 . (2.22) 

Thus V22 can be computed by measuring the new 
beam width V'~ ,. On further free propagation through 
a distance D, the beam width square becomes, on us- 
ing (2.15) and (2.20) 

V~' I = c - 2 D 2  V11 + c 2  I/'22 - 2DV12 . (2.23) 

Since V11 and V22 are known, V12 can be computed 
once V'fl is measured. 

We conclude this section by exhibiting a universal 
hyperbolic variation of the beam width under free 
propagation. Let V(zo) be the variance matrix in the 
initial transverse plane z0. The variance matrix V(z) 
in any other transverse plane obtains when S(D) in 
(2.15) with D = z -  Zo is used in (2.20). In particular 
we have for the square of the beam width 

Vii  ( Z )  = VII  (Z0)  --  V I 2 ( Z 0 ) 2 / V 2 2  (Zo)  

+ V22(Zo) [Z-Zo + G2(Zo)/Vz2(Zo)] 2 (2.24) 

We find that the plot of  the beam width [ Vii(z)] 1/2 
as a function of z is a hyperbola for all partially coh- 
erent beams. Clearly, the waist where the beam width 
becomes minimum occurs at 

(Z)waisl  = Z 0 - -  VI 2 ( Zo ) / V22 ( Zo ) , (2.25) 

the beam width at the waist itself being given by the 
expression [ V l l ( Z o  ) _ V 1 2 ( Z o ) 2 / V 2 2 ( Z o ) ]  1/2. T h e  

Rayleigh range, the distance from the waist at which 
the square of the beam width is double its value at 
the waist, is given by 

ZR = { [ V11( Zo) -- V12( Zo)2 /V22(Zo) ]/V22( Zo) } . 
(2.26) 

And, finally, the far-zone where the beam exhibits 
the van Cittert-Zernike scaling behaviour is given by 

[ Z - -  (Z)waist  [ >> 2" R . (2.27) 

This is a generalized Fraunhofer far-zone criterion 
[3,24] applicable to every partially coherent beam. 
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3. Generalized a b c d - l a w  

We have noted that the symmetric variance 
matrixV is positive definite. Let det V=g22, where 
we choose g?>0. From (2.13) and (2.19) it follows 
that 

V' + i .QK=S(  V+ ig2K)S s . (3.1) 

Since det V=de t  V', we see that V+ig2K and also 
V' + i£2K are singular hermitian matrices. Hence each 
of  them has only one non zero eigenvalue. Thus, we 
can find complex vectors ~ and ~' such that 

V + i f 2 K = ~ * ,  V' +i~2K= ~ ' ~ ' * .  (3.2) 

In fact, writing out (3.2) in component  form, one 
solves for ~ and ~' by inspection: 

¢o /~¢Tt/q'~ VI2 +iff~ 

= q =  ve.  ' 

~ ( ~ ' )  V'12+ig2 
~'=e'° x/V~2 ' q ' -  V ; ~  (3.3) 

Here 0, O' are real arbitrary. Note that the imaginary 
part of  q=~J~2 as also of  q' =~'~/~i is always posi- 
tive. With the aid of  (3.2) we can rewrite (3.1) as 

~' ~'* =S~* S v . (3.4) 

Since S is real, this equation implies 

~' =S~e ~ , (3.5) 

where ~0 is real arbitrary. That is, using (2.14) for S, 

~', = (a~ ,  + b ~ 2 ) ¢  ~ , 

~i = (c¢, +d¢2)e  ie . (3.6) 

Now, one can eliminate tp in (3.6) and write 

q'= (aq+b)/(cq+d) . (3.7) 

This is our generalized abcd-law: Arrange the ele- 
ments o f  the variance matrix V into a real quantity 
g2 = [ ( x 2 )  (s  2 ) _ ( ( x . s ) )  2 ] ~/2 and a complex quan- 
tity q =  ( x . s ) / ( s  2) +ig2/ (s2) .  [Clearly, given ~2>0 
and q with I m ( q ) > 0 ,  the elements of  V can be 
uniquely reconstructed.] Under  the action of  a first 
order system, f2 remains invariant (det V is an in- 
variant) and q undergoes transformation according 
to the generalized abcd-law (3.7). 

We shall illustrate these results with gaussian 

Schell-model beams whose cross-spectral density is 

[41 

F ( x , ,  x2 ) 

2 1 [ Xl+X~ 1 ( x , - x , ) 2 1  =A - - v  exp - ~ - 
a~ o~ 2 a~ 

×exp[(ik/2R)(x~ - x ¢  )] . (3.8) 

Clearly A, a~/v/2, ag and R are respectively the total 
irradiance, beam width, coherence length and radius 
of  curvature. Using (3.8) in (2.3), the Wolf function 
is computed to be 

W( Q) = (A/~z 2) det(G) e x p ( - Q T G Q )  , 

G (21cr~+k27212R 2 -k2y212R "] 
=k-k2~2/2R k2y2/2 J '  (3.9) 

where the parameter y is defined through 

1/?, 2 = l/a~ + 1/a i .  (3.10) 

From (3.9) it is readily seen that the variance ma- 
trix is 

(a~/2 2/k2y2 ) V = G - ' = \ a ( / 2 R  , (3.11) 

and 

.Q2 = d e t  g = a 2 / k 2 7 2  . (3.12) 

We recall that the invariant g2 is related to the de- 
gree of  global coherence [4]. Now q =  ( V~ 2 + i ~ ) / ~ 2  
implies q ~=(V12- i~ ) /V~p  We thus have for the 
gaussian Schell-model beam 

1/q= 1 /R- i  (2 /kya l ) .  (3.13) 

Comparing this expression with eq. (4.10) ofref. [4] 
we see that q in this case is indeed the complex ra- 
dius o f  curvature of  gaussian Schell-model beams. In 
other words, we find that our generalized abcd-law 
(3.7) specialized to gaussian-model beams yields our 
earlier generalization ~2 of  Kogelnik's abcd-law to 
these beams. 

To conclude this section, we note that in the coh- 
erent limit ag--,oo, (3.8) goes over to the coherent 

.2 Recently Turenen and Friberg [25] have considered the pos- 
sibility of generalizing Kogelnik's abcd-law to gaussian Schell- 
model beams. It is our belief that these authors were unfamil- 
iar with our earlier work in ref. [4] wherein this problem had 
been solved. 
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gaussian beam. In this l imit  y = a l  as seen from 
(3.10) ,  and q -  ~ becomes 

1/q= 1 / R - i  (2/ka~) . (3.14) 

Thus q obeying the general ized abcd-law in this case 
is the famil iar  complex radius  of  curvature  for coh- 
erent  gaussian beams,  and hence (3.7)  becomes Ko- 
gelnik 's  abcd-law [ 16 ]. 

4. Concluding remarks 

We have analysed the propagat ion  of  the beam 
width and angular  spread o f  an arb i t ra ry  par t ia l ly  
coherent  beam through first order  systems, and de- 
r ived a general ized abcd-law which describes this 
propagat ion.  A complex quant i ty  q with I m ( q ) > 0  
constructed from the var iance matr ix  obeys this gen- 
eral ized law. For  coherent  gaussian beams and par- 
t ially coherent  gaussian Schel l -mode beams we have 
shown that  q becomes the respective complex radi i  
of  curvature,  and  thus our  general ized law repro-  
duces Kogelnik 's  abcd-law for coherent  gaussian 
beams and our  general izat ion of  the lat ter  law to the 
gaussian Schell-model  beams  in ref. [4] .  

Since V is a 2 × 2 real symmetr ic  posi t ive defini te  
matr ix it can be represented by a t ime-like vector with 
posi t ive t ime componen t  in a 2 +  1 d imens iona l  
Minkowski  space. Then the t ransformat ion  (2.20)  
will act as a Lorentz t ransformat ion  in this space. 
That  this geometr ic  picture leads to powerful  results 
has been demons t ra ted  in refs. [4,26] ~3. 

In the case o f  gaussian Schel l-model  beams  of  
which the coherent  gaussian beams form a special 
case, the var iance matr ix  complete ly  fixes the Wol f  
function, and hence the cross-spectral  density,  
through G =  V i as can be seen from (3.9) .  Thus, 
for these beams the abcd-law alone is sufficient to 
descr ibe complete ly  their  p ropaga t ion  through first 
order  systems. For  an arb i t ra ry  par t ia l ly  coherent  
beam,  however,  the general ized abcd-law describes 
only the propagat ion  of  the second moments .  It will 
be worthwhile  to s tudy the propagat ion  of  higher or- 
der  moments  through first order  systems, and f ind 
ways of  expressing these propagat ions  in a conve- 

~3 An approach to squeezed states similar to the present one can 
be found in ref. [26]. 

nient  form as in the case o f  the general ized abcd-law. 
Another  interest ing p rob lem in this connect ion is to 
classify par t ia l ly  coherent  beams into families closed 
and i r reducible  under  the act ion o f  first order  
systems. 

As noted earlier, first order  systems correspond to 
evolut ion under  quadra t ic  hami l ton ians  in the quan- 
tum mechanical  context. The squeeze operator  is such 
a hami l ton ian  corresponding to the l inear magnif ier  
S ( m )  in the optical case, and the beam width-angular  
spread pair  corresponds to f luctuat ions in a conju- 
gate pair  o f  variables in the quan tum context.  Thus, 
it becomes clear that  the general ized abcd-law is of  
relevance to the study of  squeezed states [27].  
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