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Abstract

The inequivalent quantization over a given configuration space QQ can be associated
with the representations of the fundamental group m1(Q). Nonabelian finitely generated
groups are considered as candidates for m(Q) for several field theories and the possibility
of nonscalar quantizations examined.

Introduction
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Given a dynamical system with configuration space Q the space of states may be
chosen as functions from @ into the complex numbers C. We have become aware in recent
times that not only can we use multiple valued “scalar state vectors” but we could consider
N-component “vector state vectors” taking values in €. When ¢ € Q is taken around a

generic loop ! in @ [1]

¥n(g) — E; Vam([{])¢m (q)

where V ([{]) is an N x N unitary matrix depending on the homotopy class [I] of the loop

. Consequently

V([LDV ([iz])) = V ([Lta))

and

i ¥1(g)¥n(q)

is invariant.
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Thus V ([I]) furnish an N-dimensional unitary representation of the fundamental ho-
motopy group m;(Q). Clearly superposition holds only for vectors which belong to the
same representation. Consequently the dynamics must be formulated in any one such ir-
reducible representation and the decomposition of the state space into such superselection
sectors furnishing irreducible unitary representations (IUR) of the fundamental group is
an essential step. If R(m(Q)) denote the set of all finite-dimensional TUR’s of m(Q) the
quantum theories defined by the sectors A, of the state space, & € R(m(Q)) represent the
“prime” quantizations of the original system. R contains the trivial IUR, but in general R
will contain other elements revealing the essential “kinematic ambiguity” in choosing the
quantum theory.

The one-dimensional IUR’s may be called the scalar quantizations and are labelled
by the set

Q1 = Hom (m (@), U(I)) = Hom (H,(Q), U(I))
where H,(Q) is the first (integral) homology group of Q.

Please note that the discussion here is at the dynamical level. All the operators are
inert with regard to the fundamental group; and this extends to the dynamical evolution
and its expression in terms of the propagator. This is borne out by the explicit calculation
of path integral in multiply-connected spaces by Morandi and Menossi [2].

On the other hand if the statespace belongs to a representation 1 of the fundamental
group with character x this character may be incorporated into the propagator. Such
a symmetry adapted propagator used by Laidlaw and de Witt-Morette [2] annihilates
the initial states with other symmetries while the Morandi-Menossi type symmetry inert
propagates the initial states irrespective of its symmetry type. Related comments apply
to nonscalar realizations.

The many-dimensional IUR’s are non-scalar and correspond to an internal symmetry
of topological origin.

On each ¥,, @ € R we look for a complete set of operators [3|. The position operator

g, the finite displacement operator T, from g to ¢/ along path ¢ and finally the internal

qql?
symmetry operators 7(v), v € m(Q)

N

Unl(g7) = D Tam(7)¥m(q)

m=1

Position operator: § = multiplication by ¢

Displacement T,

which always exists [8]

= pétl.? D= —ilf; — A(q), where A(g) is the flat connection

T, =U@) — (1)
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Some Theorems on Groups
A group which is in its own comnutator subgroups is called perfect.

Theorem 1 [3] The scalar quantization is unique if and only if 7,(Q) is a perfect
group. A group with no nontrivial finite dimmensional ITUR is a U-inert group; if it has no
finite dimensional nonscalar IUR. it is a U-scalar group.

Theorem 2 [4] A finitely generated group is U-inert if and only if has no nontrivial
finite quotient groups.

Theorem 3 [4] A finitely generated group is U-scalar if and only if it has no finite
nonabelian quotient groups.

We wish to see if U-inert and U-scalar groups can arise as the fundamental group
suitable smooth manifold. Compact 2-manifolds were completely classified; none of them
have a nonabelian U-scalar fundamental group [5]. For 3-manifolds it is a longstanding
conjecture that their fundamental groups are residually finite and this in turn implies that
their fundamental groups cannot be nonabelian U-scalar (5].

(Each g € G, g # e, there exists a normal subgroup N of G, ¢ & N such that G/N is
finite, G is residually finite).

For dim M > 4 the situation is vastely different.

Theorem 4 [4] There exists, for every n > 4, a compact orientable n-manifold with
m1(M) being any finitely presented group.

The first non-trivial U-inert groups in the mathematical literature seem to be the
Higman groups H,, n > 4.

They are defined by (6]

H,=<ay,ag,...,08,| «oovvvn....

The discussion of U-inert groups naturally brings in the question of whether the
fundamental groups, can be permitted to have infinite dimensional IUR’s. We can show
using a theorem of Wehrfitz [7] that:

1. Every nontrivial U-inert group has an infinite dimensional complex representation.
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2. Every nonabelian finitely generated U-scalar group has al least one complex infinite
dimensional representation.

Unfortunately we cannot strenghten this result to “unitary” in place of complex.

Pure Gauge Theories

For a pure gauge theory with compact space manifold & of any dimension d and
structure group G defined with respect to a principal G-bundle P over I take the affine
space A of all connection one-forms over P. Let §, be the group of automorphisms of
P which fix © and the fibre above a chosen base point of . Then 4/§. is the infinite
dimensional coordinate manifold. Take P to be the trivial bundle £ x G. Then §. is GT,
the set of all basepoint preserving maps from T into G with the identity as basepoint of
G. So chosen §. acts freely on A.

Then

m1(4/G.) = mo(GT)

For & = S® with a simple nonabelian Lie group G
m(4/6.) = m3(G) = Z
Hence
01 = Hom (m (4/5.),U(1)) = U(1)

The corresponding realization is labelled by an angle 8, wellknown from Q(1), but
gseen here already at the kinematic level. The results are unaltered if we add ordinary
(non-Higgs) matter fields to the gauge fields.

For general choice of T and G, Imbo [10] has shown using Posnikov techniques that
(1) m1(A/G.) is solvable.

number of nontrivial
(2) Derived length of m(A/§.) < { homotopy groups of &
from dim 1 to dim ¥

It then follows that m,(A/G.) can be

abelian «— U-scalar

trivial «— U-inert.
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Ifdim £ = 1, 1, (A/G.) is abelian; dim T = 2 since m(G) = e for any Lie group G, m
is still abelian. For dim T = 3 Isham had shown that m(A/G.) is abelian for all compact
simple Lie groups. Despite these disappointments, for sufficiently large dim X one should
be able to construct a gauge theory with a nonabelian fundamental group.

Gravity Theories

For gravity theories T is a connected compact 3-manifold. The configuration space
may be chosen as [9]

Riem(Z)/Diffr(Z) = R/D
and consequently
m (R/D) = ?I'U(DIHF(E})

There are choices of ¥ for which m; is abelian or nonabelian. An example of particular
interest in the present context is the Poincaré sphere

L=5%r
The binary icosahedral group I* acts freely on §°. Moreover [12]

m(R/D) =1 ; |I*| = 120

I* is perfect and so has no nontrivial one-dimensional representation. But it does
have several many-dimensional representations including one of dimension 2.

Generalized Sigma Models

The generalized nonlinear sigma models can have 7;(@) nonabelian. The fields are
mappings from T of dim d into an arbitrary manifold M. These are not all path connected
and so a distinguished component is chosen to be the one containing the constant map
T — mg € M. If we choose the configuration space to be ME (basepoint fixed), then

Imbo has recently shown [10]:

m (MF,¢) is solvable of lenght <
number of nontrivial homotopy groups of M
from dim 2 to dim d + 1
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For m;(M¥,c) the situation is different; it need not be solvable. In particular & = $¢,
d > 1 provided M is (d + 1)-simple

:rrl[MSd,c} 2~ g (M) x my (M)
So that if w411 (M) = e, then

m (M5, c) = my (M)

Since by theorem 4 we can construct a manifold with 7y (M) U-scalar or U-inert and
ma+1(M) = e the corresponding sigma model can be made to have unique quantization
even though (M*®*, ¢) is multiply connected. For d = 1 these may have bearing on closed
bosonic string theory.

Discussion

The exploration in this paper has been on the inequivalent quantum descriptions of a
physical system with a given configuration space . There are as many distinct quantum
systems at the kinematical level as the IUR’s of m1(Q). The theories with IUR's with
degree greater than one possess an internal quantum symmetry of topological origin. We
saw that nontrivial m;(Q) may exist which nevertheless admits only scalar or even only
unique quantizations. Various quantum field theories were examined to see where scalar
and vector quantizations were possible and several possibilities were identified. Since we do
not have much confidence or experience in nonscalar quantum theories it may be desirable
to first get familiar with them by studying simple quantum systems with finite number of
degrees of freedom which admit of nonscalar quantization with @ = 5%/Qs where Q® is
the quaternion group. A flat connection is obtained by projecting

A=iVTV;  V(a,B,q) = eoraeionaghe’’

onto $?/Qs. The space of state vectors corresponding to the 2-dimensional IUR can then
be constructed. Similarly for 3 particles moving on R? or 5% the nonscalar IUR’s can
be constructed and studied. The physical significance of nonscalar quantum mechanics
deserves more detailed study.
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Appendix: General Questions of Statistics
1. Scalar Statistics
12(M) = Hom(m(Qn(M)),U(1)) = Hom(H,(Qx(M)),U(1))
For dim M > 3 or M closed 2-manifold not §%, then

Hy(Q.(M)) = Hi(M) & Zo; nz2
QH(M]Eﬂl@Zg; n22

0.(M)/Q3(M) = 7. Bose or Fermi.

M=5" |, H(Q.(S?) = 0n(5?) = Zgn_,
M=R' |, H(Q.(RY))=UQ).

2. Nonscalar Statistics
dim M >3 , m(M"—A)=/{e}
s0

m((M" — A/S,) = S. = Ba(M)

n 25 10 20 50
p(n) 2 T 42 627 204,266

dim M =2 B.(R?)  n—string Artin braid group.

B, (R* = OrOr410; = 0r310,0r11; 1S 7<n—2
n( )_< Oly-+ 4 On—1 —
0,0, = 0,0, |r—s|>2
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By(R?) = 2,
Bs(R?) =< a,ba® = b* >

; 10 : sinf!l  cosé#
g i 3 _
e (0 w) =g (cosﬂ —sin-‘.’;‘) w =1

a:= ¢’

o oD -
o E &

o
0 } l‘ij = Es‘liﬁ(—éjk + 2'-'1.3'71.1:)
wﬂ

and a host of other realizations of increasing dimensions.

Bs(SY) =<cd|d=d ; d=cdc> ; |Ba(S*)| =12

_y2 W 0 i NS 01
=x(y 5)  e=2(33)

B.(5%) , B,.(R?) for n > 4 are infinite and difficult to deal with.
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