IDENTICAL PARTICLES, EXOTIC STATISTICS AND BRAID GROUPS

Tom D. IMBO, Chandni SHAH IMBO and E.C.G. SUDARSHAN

Center for Particle Theory, University of Texas at Austin, Austin, TX 78712, USA
Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

Received 24 September 1989

The inequivalent quantizations of a system of n identical particles on a manifold M, $\dim M \geq 2$, are in 1-1 correspondence with irreducible unitary representations of the braid group $B_n(M)$. The notion of the statistics of the particles is made precise. We give various examples where all the possible statistics for the system are determined, and find instances where the particles obey statistics different from the well-studied Bose, Fermi para- and θ-statistics.

For the past four decades theoretical physicists have had a love–hate relationship with the idea of particles obeying exotic (i.e., non-Bose and non-Fermi) statistics. The best known of these are the so-called parastatistics [1] that can occur in particle mechanics and field theory. These statistics are associated with higher dimensional representations of the permutation groups, just as Bose and Fermi statistics are associated with the one-dimensional representations. More recently, there has been much interest in the fractional (θ-) statistics that can occur in some two-dimensional systems [2,3]; they are labelled by an angle θ and smoothly interpolate between the Bose ($\theta=0$) and Fermi ($\theta=\pi$) cases. Fractional statistics play a role in several theoretical investigations in 2D condensed-matter physics (e.g., the fractional quantum Hall effect [4] and high-T_c superconductivity [5]). The purpose of this Letter is to demonstrate the existence of exotic statistics other than those mentioned above, and to develop a procedure for their classification.

In particle mechanics, the above exotic possibilities are a consequence of the non-trivial topology of the relevant configuration space. When quantizing a classical system with configuration space Q, the standard procedure is to construct the fixed time quantum mechanical state vectors as functions from Q into the complex numbers \mathbb{C}. However, more generally we may choose them as sections of a \mathbb{C}^N-bundle over Q, $N \geq 1$. The classical limit of a quantum theory built as above on a bundle B will differ from the original classical system by the introduction of an external gauge potential; namely, the natural $U(N)$ connection on B. In order to classify the inequivalent quantizations of a fixed classical system, we require this connection to be flat so as not to change the classical equations of motion. On each such bundle, the holonomy of the flat connection provides an N-dimensional unitary representation of the fundamental group $\pi_1(Q)$. Conversely, given any such representation ρ, one can construct a complex vector bundle whose holonomy realizes ρ [6]. If ρ is reducible, then the corresponding bundle B_ρ breaks up into a Whitney sum of bundles $\{B_{\rho_i}\}$, where the ρ_i are the irreducible components of ρ. A similar decomposition of the Hilbert space of sections of B_ρ occurs. If we let $\mathcal{R}(\pi_1(Q))$ denote the set of all (equivalence classes of) finite-dimensional irreducible unitary representations (IUR’s) of $\pi_1(Q)$, then the quantum theories associated with the irreducible bundles B_{ρ_i}, $\alpha \in \mathcal{R}$, represent the “prime quantizations” of the original system 2. \mathcal{R} always contains at least one ele-

1 We assume that the system is not interacting with any external field. We also take Q to be path connected.

2 These are the only quantizations of genuine interest since the Hilbert space of any other quantization is just the direct sum of the Hilbert spaces of various prime quantizations. Throughout this work a “quantization” will always mean a “prime quantization”.

0370-2693/90/$03.50 \copyright$ Elsevier Science Publishers B.V. (North-Holland)
merit, namely the trivial IUR, and the associated quantum theory has ordinary complex-valued functions as state vectors. However, in general \(\mathcal{H} \) will contain more than one element, showing the essential "kinematical ambiguity" in quantizing a classical system \(^3\). The quantizations corresponding to \(N=1 \), the so-called scalar quantum theories, are labelled by the character group \(\Omega = \text{Hom}(\pi_1(Q), U(1)) \) \(^4\) \(\cong H^1(Q, U(1)) \) \([8]\). The quantum theories associated with irreducible \(C^N \) bundles, \(N>1 \), possess an "internal symmetry" of topological origin associated with the entire system \([9]\).

To determine the inequivalent quantizations of a given system one must identify the configuration space \(Q \), calculate \(\pi_1(Q) \), and then construct \(\mathcal{H}(\pi_1(Q)) \). We now carry out this program for the system of \(n \) identical particles moving on a smooth, path-connected manifold \(M \) (without boundary) of dimension \(d \geq 2 \) \(^4\). For \(n=1 \), \(Q \) is simply \(M \) and the IUR’s of \(\pi_1(M) \) label the inequivalent quantizations. If \(n \geq 2 \) and the particles are distinguishable, then \(Q=M^n \), the \(n \)-fold cartesian product of \(M \) with itself. However, when the particles are identical we must identify any two points of \(M^n \) which differ only by a permutation of the particle labels. The configuration space could then be the orbit space \((M^n \setminus \Delta)/S_n \), the \(n \)-fold symmetric product of \(M \), under the action of \(S_n \), the permutation group on \(n \) symbols. We denote this space by \(M^n/S_n \), called the \(n \)-fold symmetric product of \(M \) \([11]\). (Note that \(B_n(M) \equiv \pi_1(M) \).) The set \(\mathcal{H}(B_n(M)) \) of IUR’s of \(B_n(M) \) labels the inequivalent quantizations. Speaking vaguely for a moment, the different quantizations are related to the different possible “statistics” for the \(n \) identical particles (\(n \geq 2 \)), but one must be careful not to overcount.

An element of \(B_n(M) \) can be thought of as a homotopy class of paths in \(M^n \setminus \Delta \) whose (fixed) initial and final points are related by a permutation of the particle labels. The configuration space could then be the orbit space of \(M^n \) under this action by \(S_n \), the permutation group on \(n \) symbols. We denote this space by \(M^n/S_n \), called the \(n \)-fold symmetric product of \(M \). There are two problems with the choice \(Q=M^n \). First, the \(S_n \) action on \(M^n \) has fixed points and therefore \(Q \) is not, in general, a smooth manifold; hence ordinary techniques of quantization utilizing the tangent bundle of \(Q \) cannot be applied. Second, even if a consistent quantization procedure can be found, one can demonstrate that only theories with Bose statistics will be obtained since we have included points of coincidence of two or more particles in our configuration space \(^5\). One may remedy both of the above problems by removing from \(M^n \) the subcomplex \(\Delta \) consisting of all points where two or more particle coordinates coincide. Now \(S_n \) acts freely (i.e., without fixed points) on \(M^n \setminus \Delta \) and the orbit space \((M^n \setminus \Delta)/S_n \equiv Q_n(M) \) is a smooth manifold. We choose this manifold as our configuration space. The group \(\pi_1(Q_n(M)) \equiv B_n(M) \) is called the \(n \)-string braid group of \(M \) \([11]\). (Note that \(B_n(M) \equiv \pi_1(M) \).)

\(^3\) We will ignore possible ambiguities of dynamical origin. The above classification can be found in ref. \([7]\).

\(^4\) Quantizations on nonflat bundles may yield new types of "statistics" other than those considered below. See, e.g., ref. \([10]\). However, such statistics no longer have a purely kinematical definition.

\(^5\) A proof and further discussion of this will be given in a forthcoming paper by the authors using the ideas in this work.
Let $\Sigma_n(M)$ be the subgroup of $B_n(M)$ generated by \mathcal{P}. It is clear that the statistics of the n identical particles on M provided by an IUR ρ of $B_n(M)$ is determined by $\rho \downarrow \Sigma_n(M)$, the restriction of ρ to $\Sigma_n(M)$. ($\rho \downarrow \Sigma_n$ is, in general, reducible.) We propose the following definition:

Definition. Two IUR’s ρ_1 and ρ_2 of $B_n(M)$ are **statistically equivalent** (written $\rho_1 \sim \rho_2$) if for some positive integers s and t

$$\mathbb{1}_s \otimes (\rho_1 \downarrow \Sigma_n) \simeq \mathbb{1}_t \otimes (\rho_2 \downarrow \Sigma_n).$$

(Here the symbol “\simeq” means equivalence as representations, \otimes denotes the inner tensor product, and $\mathbb{1}_s$ and $\mathbb{1}_t$ are the trivial representations of Σ_n of dimensions s and t respectively.) The presence of $\mathbb{1}_s$ and $\mathbb{1}_t$ in the above equality accounts for differences which only pertain to the distinct dimensionalities of ρ_1 and ρ_2. It is easy to check that “\sim” is an equivalence relation on $\mathcal{B}(B_n(M))$. Therefore, $\mathcal{B}(B_n(M))$ breaks up into equivalence classes, each containing only IUR’s whose corresponding quantizations yield the same statistics for the n identical particles. If M is simply connected then $\Sigma_n(M) = B_n(M)$ and distinct quantizations give distinct statistics as expected. Our definition provides a natural generalization to the case $\Sigma_n(M) \neq \{e\}$.

Since the S_n action on $M^n - \Delta$ is free, we have the following vibration [11]:

$$S_n \hookrightarrow M^n - \Delta \longrightarrow Q_n(M). \quad (1)$$

The long exact homotopy sequence [12] of this vibration yields the following short exact sequence for $B_n(M)$:

$$\{e\} \rightarrow \pi_1(M^n - \Delta) \longrightarrow \alpha \longrightarrow B_n(M) \longrightarrow \beta S_n \longrightarrow \{e\}. \quad (2)$$

The generators \mathcal{L} of $B_n(M)$ are in the kernel of the epimorphism β, while the generators σ_i in \mathcal{P} map onto the corresponding transpositions in S_n. Thus $\beta \downarrow \Sigma_n$ is an epimorphism from $\Sigma_n(M)$ onto S_n. Given an IUR ρ of S_n, one can “lift” it to an IUR $\tilde{\rho}$ of $B_n(M)$, i.e.,

$$\tilde{\rho}(b) = (\rho(\beta(b))) \text{ for all } b \in B_n(M).$$

Clearly $\tilde{\rho} \downarrow \Sigma_n$ is the lift of ρ to $\Sigma_n(M)$. So there are at least as many distinct choices of statistics for the n particles as there are IUR’s of S_n. The statistics so obtained correspond to the parastatistics mentioned earlier. (Here we consider Bose and Fermi statistics as special cases of parastatistics.) In general, there will be many other possibilities.

The codimension of Δ in M^n is d. Therefore if $d \geq 3$, standard general position arguments give [13] $\pi_1(M^n - \Delta) \cong \pi_1(M)^n$. Hence by eq. (2), $B_n(M) \cong S_n$ if $\pi_1(M) = \{e\}$, and only parastatistics are possible. In particular this is true for $M = \mathbb{R}^d$, $d \geq 3$. Now let $f: \mathbb{R}^d \rightarrow M$ be a local coordinate chart. By the naturality [12] of the long exact homotopy sequence of eq. (1) we obtain the following commutative diagram ($d \geq 3$):

$$\begin{array}{ccc}
\{e\} & \longrightarrow & \pi_1(\mathbb{R}^d) \\
\downarrow f^* & & \downarrow g \\
\{e\} & \longrightarrow & \pi_1(M)^n \\
\end{array}$$

where h is the identity map and γ is an isomorphism since $\pi_1(\mathbb{R}^d) = \{e\}$. The map $\tau = g \cdot \gamma^{-1} \cdot h^{-1}$ is a splitting homomorphism for the short exact sequence for $B_n(M)$, that is, $\beta \circ \tau$ is the identity map on S_n. Hence $B_n(M)$ is a semidirect product of $\pi_1(M)^n$ with S_n

$$B_n(M) = \pi_1(M)^n \rtimes_{\beta} S_n.$$

The defining map $\mu: S_n \rightarrow \text{Aut}(\pi_1(M)^n)$ is given by

$$\mu(\pi)(l_1, ..., l_n) = (l_{\pi(1)}, ..., l_{\pi(n)}).$$

This semidirect product is called the *wreath product* [14] of $\pi_1(M)$ with S_n and denoted by $\pi_1(M) \wr S_n$. So $B_n(M) = \pi_1(M) \wr S_n$ for $d \geq 3$. The image of τ in $B_n(M)$ is $\Sigma_n(M)$, that is, $\Sigma_n(M) \cong S_n$. However this does not imply that we only obtain parastatistics, for given an IUR ρ of $B_n(M)$, $\pi \downarrow \Sigma_n$ may contain inequivalent irreducible components. Also, the quantization corresponding to an IUR ρ of $B_n(M)$ is not just a “direct sum” of many parastatistical quantizations, one for each irreducible component of $\rho \downarrow \Sigma_n$, since ρ is irreducible. However since $\Sigma_n(M)$ is just S_n, we call the associated statistics generalized parastatistics. An important consequence of the above is that the only types of statistics associated with scalar quantiza-
tions (which we call scalar statistics) of n identical particles on M, dim $M \geq 3$, are Bose and Fermi.

As an example consider two identical particles moving on real projective three-space $\mathbb{RP}^3 = S^3/\mathbb{Z}_2$. Since $\pi_1(\mathbb{RP}^3) \cong \mathbb{Z}_2$, we have $B_2(\mathbb{RP}^3) = \mathbb{Z}_2 \times \mathbb{Z}_2$ which is the dihedral group D_8 of order 8. This group is generated by two elements l and σ subject to the relations $l^2 = \sigma^2 = e$ and $(\sigma l)^2 = (\sigma l)$. We have $\Sigma_2(\mathbb{RP}^3) \cong \mathbb{Z}_2$. There are five IUR's of D_8 four have dimension 1 and one has dimension 2. They are given by

$$
\rho_1(l) = 1, \quad \rho_1(\sigma) = 1, \quad \rho_2(l) = -1, \quad \rho_3(l) = -1, \quad \rho_4(l) = 1, \quad \rho_5(l) = -1,
$$

$$
\rho_1(l) = 1, \quad \rho_2(\sigma) = 1, \quad \rho_3(l) = 1, \quad \rho_4(l) = -1,
$$

$$
\rho_1(l) = 0, \quad \rho_2(l) = 1, \quad \rho_3(l) = 0, \quad \rho_4(l) = 0.
$$

These give Bose statistics for the two particles, ρ_2 and ρ_4 yield Fermi statistics and ρ_5 provides a new type of “half Bose–half Fermi” exotic statistics. Note that

$$
\rho_5(l) \rho_5(\sigma) \rho_5(l) = \left(\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array} \right),
$$

which shows the coupling of \mathcal{L} and \mathcal{P}. Although there are five inequivalent quantizations of the systems, there are only three inequivalent statistics. We call the statistics associated with ρ_5 ambistatistics.

For $d = 2$ the situation is much more complex, leading to a richer spectrum of statistics. The first complication is that the codimension of Δ in M^n is 2 and hence $\pi_1(M^n - \Delta) \cong \pi_1(M)^n$ in general. For $M = \mathbb{R}^2$ and $n \geq 2$, $\pi_1(\mathbb{R}^{2n} - \Delta)$ is nontrivial and $B_n(\mathbb{R}^2) = \Sigma_n(\mathbb{R}^2)$ is an infinite group which is nonabelian for $n \geq 3$ (B$_2(\mathbb{R}^2)$ is the metacyclic group of order 12 which has six IUR's). For all $n \geq 2$, $H_1(Q_n(\mathbb{R}^2)) \cong B_n(\mathbb{R}^2) \cong \mathbb{Z}_2$ and since $\text{Hom}(Z, U(1)) \cong U(1)$ the scalar quantizations and statistics of the system are labelled by an angle θ [3]. These are the fractional statistics discussed previously. We already see that in two dimensions, unlike the situation in higher dimensions, the representation of $\Sigma_n(M)$ defining the statistics need not be equivalent to a representation over \mathbb{R}. Also, for an arbitrary two-manifold M, the extension in eq. (2) will not be split in general. The case $M = S^2$ is well studied [15], $B_2(S^2) \cong \mathbb{Z}_2$ and there are only Bose and Fermi statistics for the two-particle system. $B_3(S^2)$ is the metacyclic group of order 12 which has six IUR's, four of dimension 1 and two of dimension 2, yielding six distinct statistics [16]. If $n \geq 2$, $B_n(S^2) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and the number of scalar quantizations and statistics grows with n [17]. For a further discussion of the higher dimensional IUR's of $B_n(\mathbb{R}^2)$ and $B_n(S^2)$, see ref. [16].

Explicit presentations of the braid groups $B_n(M)$ of all other closed two-manifolds are known [13,18,19]. These groups are all infinite and nonabelian except for $B_2(\mathbb{RP}^3)$ which is generated by l and σ with relations $l^2 = s^2 = e$ and $(\sigma l)^2 = (\sigma l)$. We have $\Sigma_2(\mathbb{RP}^3) \cong \mathbb{Z}_2$, $B_2(\mathbb{RP}^3)$ is the dicyclic group of order 16 and has seven IUR's, four of dimension 1 and three of dimension 2. They are the “same” as those for $B_2(\mathbb{RP}^3)$ (see eq. (3)) except there are two additional IUR's given by

$$
\rho_6(l) = \frac{i}{\sqrt{2}} \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right), \quad \rho_6(\sigma) = i \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right),
$$

$$
\rho_7(l) = -\frac{i}{\sqrt{2}} \left(\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right), \quad \rho_7(\sigma) = i \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).
$$

ρ_6 and ρ_7 are statistically equivalent, yielding a type of “fractional” ambistatistics. Thus the scalar statistics are only Bose and Fermi, but there are two types of exotic nonscalar statistics. More generally for all closed two-manifolds $M \neq S^2$ and any $n \geq 2$, the only scalar statistics are Bose and Fermi since $B_n(M)_{ab} \cong H_1(M) \otimes \mathbb{Z}_2$ and the image of $\Sigma_n(M)$ under the abelianization map is the \mathbb{Z}_2 direct factor. This can be demonstrated by explicitly abelianizing the presentations in ref. [19]. Thus these manifolds allow the same scalar statistics as all manifolds of higher dimension. Note the peculiarity of the $M = S^2$ case where $B_n(S^2)_{ab}$ depends on n. We do not know if this is the only manifold which displays this behavior. However it can be shown [20] that for any open two-manifold M, $B_n(M)_{ab} \cong B_{n+1}(M)_{ab}$ for $n \geq 4$. In a future communication we will study exotic statistics on $M = S^1$.

For footnote see next page.
After the completion of this work we became aware of a recent preprint [21] by Aneziris et al. demonstrating that three-dimensional geons in quantum gravity "may be neither bosons nor fermions (nor paraparticles)". This fact, among others, leads them to conclude "our usual conceptions about the statistics of particle species thus do not seem to be valid in generally covariant theories". In the examples which motivate these statements the identical geons obey what we would here call (fractional) ambistatistics. Thus these strange geon statistics do have an analog in particle mechanics, and our examples above may provide a simple theoretical laboratory in which to study the properties of these interesting topological excitations in quantum gravity.

It is a pleasure to thank A.K. Bousefield, Duane Dicus, John Durbin, Cameron Gordon, Gary Hamrick, and Greg Nagao for useful discussions. This work was supported in part by the US Department of Energy under grant no. DE-FG05-85ER40200.

References

 T. Okayama, Prog. Theor. Phys. 7 (1952) 517;
 B. Kostants in: Lecture Notes in Mathematics, Vol. 170 (Springer, Berlin, 1970);