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We define a new unitary operator in the Hilbert space of a quantum system which parallel transports the state of the system
along an arbitrary curve in the projective Hilbert space. This operator is geometrical even for an open curve in the sense that it
depends uniquely only on the curve and is independent of the Hamiltonian. Using this, when the curve is closed, the geometric

« phases discovered by Pancharatnam, Berry and Aharonov-Anandan are obtained.

The geometric phase was first discovered by Pan-
charatnam [1] for the cyclic evolution of a photon
polarization state due to a sequence of filtering mea-
surements. Berry [2] showed that during an adi-
abatic cyclic evolution of an energy eigenstate of any
quantum system there is a phase factor which is in-
dependent of the rate of evolution. This phase can
be measured experimentally. The geometric mean-
ing of this adiabatic geometric phase was pointed out
by Simon [3] as parallel transport in a line bundle
corresponding to the eigenstate of a particular energy
eigenvalue. It has been generalized to Hamiltonians
with degenerate eigenvalues [4]. By looking at an
arbitrary cyclic evolution of a state, a geometric part
of the phase was isolated by Aharonov and Anandan
[5]. They also pointed out its geometric meaning as
the phase factor obtained in parallel transporting a
state around a closed curve on the projective Hilbert
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space 2, which is the set of rays of the Hilbert space
#, with respect to a connection arising from the in-
ner product in . If #=C", then 2 is CP"~!, e.g.
for n=2, #=CP! is the two-dimensional sphere S2.
The Berry phase may be seen to be the adiabatic limit
of this more general geometric phase, which has also
been measured experimentally [6].

In this note we obtain the geometric phase using
an operator which has a geometric meaning even for
a non-cyclic evolution. This result is useful also be-
cause it is of group theoretic nature and does not ex-
plicitly require parallel transport in the natural vec-
tor bundle over 2 as done previously [5]. In this
respect it is analogous to the treatment of the geo-
metric phase due to Anandan and Stodolsky [7].

To establish a physical meaning of the result that
we shall obtain, consider a filtering measurement,
studied by Pancharatnam, by which we mean that a
quantum system which is initially in a superposition
of two orthogonal states passes through a filter which
absorbs one of the states but lets through the other
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state so that it has a definite phase relation with the
original state. For example, the quantum system may
be a photon in a superposition of two orthogonal po-
larization states one of which is absorbed by a po-
larizer while the other passes through. It was shown
[1,8,9] that the final state when a Pancharatnam fil-
tering measurement is made on a given initial state
of an arbitrary quantum system may be obtained by
parallel transporting the initial state along the short-
est geodesic joining the two points in & representing
the two states. The geodesic here is determined by
the Fubini-Study metric [10] in #. Hence, the Pan-
charatnam phase factor is the holonomy transfor-
mation obtained by parallel transporting the state
around the geodesic polygon defined by the se-
quence of states obtained by the measurements.

Consider now a particular filtering measurement
which results in the parallel transport along a given
geodesic segment of this polygon of a given initial
state e # to a final state which is proportional to
ne #. We assume that £7¢=1, n'y=1. Then the rays
to which £ and 7 belong to, which are the initial and
final points of this geodesic segment, may be rep-
resented by the pure state density matrices &t and
nn'. But there are infinite number of operators in #
which obtain the above parallel transport. We ask
now which operator U(n, &) satisfies the following
properties:

(i) U(n, &) parallel transports £ along the shortest
geodesic joining the points &' and ny" in 2.

(ii) U(n, &) parallel transports a vector { orthog-
onal to &in the subspace spanned by £and 7 to a vec-
tor y that is orthogonal to n along the shortest geo-
desic in 2 joining (¢t and xx'.

(iii) U(n, &) leaves unchanged all vectors orthog-
onal to the & 7 subspace.

Since U(1, €) maps a given orthornormal basis into
another definite orthonormal basis, it is a unitary
operator uniquely determined by £ and 5. We now
show that U(#, &) is the rotation

2m ' —mn' - &+ P(n, &)
&t
+1-P(n, %), (1)
where P(7n, &) is the projection matrix to the & »n

complex plane, i.e. it projects a general complex vec-
tor to the & 7 plane. Explicitly,

Un, &=
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(& —mm") (&' —m'")
1-&Mmm*é ’
The property (iii) follows from the fact that U(#,
£), defined in eq. (1), depends only on 5 and & To

prove (ii) and (iii), we shall use a theorem in ref.
[9] stated below eq. (3.1). Let

P(n, )= (2)

o =U(n &)e= 9L
= 'I,f)f—m’ 3)

then (& )¢ is positive. Hence, property (i) follows
as a special case of the abovementioned theorem. To
prove (ii), suppose n=af+ b{, where £ and { are or-
thonormal and |a|?+ |b|?>=1. Then, on using eq.
(1), {TU(n, €){=1{a|, which is positive, provided ¢,
n are non-orthogonal. The abovementioned theorem
then implies property (ii). (In the degenerate case
of £ and 7 being orthogonal, there are infinite num-
ber of “shortest™ geodesics joining the correspond-
ing points on # and U(n, &) cannot be defined
uniquely.) It is easy to verify that

U, UG m=1, (4)
U(n, OV n)y=m". (5)

In the Hilbert subspace spanned by & and n, & and
{{" are opposite points of the corresponding projec-
tive space which is a sphere S2. U(#, &) corresponds
to rotations along great circles which move these two
points to two other opposite points, #17 and yx' of
this sphere.

So U(n, &), given by (1), parallel transports two
vectors of an orthonormal basis and leaves the oth-
ers invariant, which are also special cases of parallel
transport. In this sense, U(7, £) may be regarded as
a special case of the operator that parallel transports
each vector of an orthonormal basis, which was in-
troduced by Anandan and Stodolsky [7]. It follows
from their arguments [7] that U(#n, £)eSU (n). This
can also be verified directly by writing eq. (1) in a
basis in which, without loss of generality, = (1, 0,
0,..,0)and 7=(cos@,sinf, 0, ..., 0), and observing
that det U(n, £)=+1. But the group of operators
used by Anandan-Stodolsky and Anandan [7], who
study only continuous Schrédinger evolution and not
Pancharatnam measurements, is determined by a
class of Hamiltonians corresponding to all possible
values of a set of parameters. And this could be a
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proper subgroup of SU(n). There need not be an ele-
ment of their group which transforms between any
two normalized £, ne 5. But the group generated by
the set of operators of the form (1), for all possible
pairs (7, &), can be shown to be SU(n).

If we have a cyclic evolution of 5 in the sense of
Pancharatnam, then by multiplying the sequence of
the operators (1) associated with the sides of the
corresponding geodesic polygon in £, we obtain an
operator WeSU(n) uniquely determined by ‘this
polygon. By acting on the initial # by W, we would
obtain the geometric phase factor as the eigenvalue.

Another physical meaning can be given for the op-
erator (1) as follows. Suppose there is a continuous
Schridinger evolution from & to 7 such that the ex-
pectation value of the Hamiltonian { H) =0, but the
uncertainty of energy AE (¢) for this evolution is such
that

3
7 AEdt

is the minimum of all possible evolutions from &&*
to ny'. Then the evolution is along the shortest geo-
desic joining & and yn' [11]. Therefore, in this case,

n=U(n, &¢&.

An example of geodesic motion is provided by the
motion of the polarization state of light when it passes
through a quarter-wave plate. The polarization states
of a photon form a two-dimensional Hilbert space
whose projective space is the Poincaré sphere. The
two circularly polarized states, being orthogonal, may
be taken as the north and south poles of this sphere.
Then the linearly polarized states form the equator.
Suppose light, originally in a linearly polarized state,
enters a suitably oriented quarter-wave plate and
leaves it circularly polarized, the motion of the po-
larization state inside this plate is along the geodesic
of the Poincaré sphere that starts from a point on the
equator and ends at one of the poles.

More generally, consider an evolution &(¢) around
an arbitrary loop /() =&(¢)&£7(¢) in an arbitrary pro-
jective Hilbert space 2 such that

£(0)EM(0)=&(T)EN(T) . (6)

This is a cyclic evolution and it could be obtained by
a suitable time dependent Hamiltonian H. We as-
sume further that ( H) =0, which implies that &(¢)

PHYSICS LETTERS A

13 April 1992

is being parallel transported along this curve [5]. Eq.
(6) implies

&T)=WE(0)=e"¢(0), (7)

where W is an element of the little group which
changes £(0) only by a phase. By approximating / by
a polygon with an indefinitely large number of sides,
we shall obtain such a W by multiplying our oper-
ators U for the sides of this polygon. Then by the ear-
lier argument, WeSU(n). Hence, from (7) the set
of such operators W for all possible cyclic evolutions
beginning and ending at a fixed point on £ is a
subgroup of S(U(n—1)XU(1)). This is unlike the
holonomy transformations studied by Anandan and
Stodolsky [7] which belong to S(U(1)X...XU(1)
(n times)).

To obtain an explicit expression for U associated
with an arbitrary loop /(¢), let us take two infinites-
imally close points /(¢,) and I/(¢,) on the loop. Let

(t))=(—A)(n-)",
()= (+4)(nt ). (8)

We consider the sequence of transformations de-
fined by

w(n, & D) =Un+HUn+4,n-4)U(n—4,%) .
€))

This corresponds to a rotation from & to
(n+4) (n+4)*, a rotation from (n+4)(n+4)* to
(n—4) (n—4)* followed by a rotation back to &&7.
Hence, it is a special ¢ case of the spherical triangle
used in computing the Pancharatnam phase [1] for
a cyclic evolution in which a photon passes through
a sequence of four polarization states, the last of
which is the same as the first one up to a phase. To
obtain W we can divide the loop /(¢) into infinites-
imal parts and take the product
W)= HW(VIn &4) . (10)
This is analogous to obtaining the holonomy trans-
formations for an arbitrary loop by multiplying a se-
quence of holonomy transformations for infinitesi-
mal triangles [12].

It is easier to work out w(7, & 4) by the following
method rather than by direct multiplication. From
(1) we find, up to O(4),
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U(n+4,n—4) nte=&e=0. (20)
=1+2(n+4)(n+4)' (n—4) (n—-4)" Then
=+ ) (n+A)' = (n=A) (=)' . (D pytw(n, & Ae=c(1—y &M d'e, (21)

Using the fact
U n+d)(n+ D) (n+ )T =&MU n+4),  (12)
we can rewrite w(z, & 4) as
w(n, ¢, 4)=V (¢, n+4,n—4)
+28V(E n+ 4, n—A)ET
—&W(E nt+d4,n—-4)
- V(& n+d,n-4)E", (13)

where V(& n+4, n—4)=U(& n+4)YU(n—4, &).

w(n, & 4) is a unitary matrix of #, & 4 and their
adjoints. The form of (13) implies that it must be
of the form

w(n, & dy=1+iall"+b(1-&&Hm'(1-&")
+c(1=&NndT[1 =P(n, &) ]
—c*[1=P(n, &) 1dn* (1=&&) . (14)

This implies that w(#, & 4) is an element of the little
group of & In (14) 4, b, ¢, are constants depending
on & n and 4. Here a and b are of o(4) whereas c is
of O(1). To get these constants, it is easy to verify

Stw(n, & 4)é=1+ia (15)

and

nt(1-&Nw(n, & 4)(1-&Mn
=(1-n*&M)+6(1—n'&Mn)*. (16)

Computation of the left hand sides of (15) and (16)
becomes simple using (3) and

28t EE—ntén

U(¢, = . 17
It follows
g _ié*nn*é(z’*n—nzﬁ)tg*éé*A—é*nATé, (18)
ST S
a

To compute ¢, consider a state vector € such that
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which gives

2yn'&n (22)

C= .
1-n'&Mn

From eq. (18), d=a so that a is real. Hence, from
(15), the phase acquired by £ under the action of w(z,
& 4) is a, which is given by (18). Hence a is the geo-
metric phase.

The first non-trivial example is n=2. Then 2 is
a sphere. Consider the infinitesimal geodesic triangle
on 2 corresponding to the vectors & n—A4 and n+4
defined by

E=(1,0), n=(cos i6,sin i6),
n+4=(exp(iidg) cos 16, exp(—41idg) sin }6) .

Then A=4id¢(cos 6, —sin $6). The geometric phase
from (18) for this triangle is

a=2dgsin?(16),

which is half the solid angle subtended by this geo-
desic triangle at the center of the sphere. Now given
an arbitrary cyclic evolution described by a closed
curve C on 2, we can fill it with infinitesimal tri-
angles like the above ones, neglecting the defect area
which is of second order in small quantities. There-
fore the geometric phase for C is the sum of the con-
tributions of the infinitesimal triangles. So, we con-
clude that, when n=2, for an arbitrary cyclic
evolution C, the geometric phase is half the solid an-
gle subtended by C at the center of the sphere which
represents 2. It should be noted that this result has
been obtained by purely group theoretical arguments
and not by integrating the connection due to Ahar-
onov and Anandan [5] around C.
For n=3, i.e. SU(3), define

&r=4(1+4n%4,) (23)
and
mt=5(1+3m,) , (24)

where A, are generators of SU(3). Suppose 4=7d¢,



Volume 164, number 2

where the overdot denotes time derivative. Then, it
can be shown that

a_f;zbcmambnc
~ (G+nimy)’

where f,. are the structure constants of SU(3). If
m(¢t) is given then by integrating (25) with respect
to time, the geometric phase for an arbitrary cyclic
evolution can be obtained [13].

As already mentioned, U belongs to the intersec-
tion of SU(n) and U(n—1)XU(1) which is iso-
morphic to SU(n—1) xU(1). Since the U(1) part
of this element is obtained from each of the slices of
the triangles, it is proportional to the area of the sur-
face enclosed by the loop. The overall phase of a state
is arbitrary. The overall geometric phase for a closed
path is however measurable as already shown in the
literature [6]. For n=2 this is the geometric phase
measured by Simon, Sudarshan and Kimble [6].

The SU(n) phase defined in this Letter is mean-
ingful even for open paths. This is unlike the geo-
metric phase which is defined for closed paths, and
could be associated with open paths only by implic-
itly closing the path by a geodesic joining the end
points. Eq. (18), as far as we know, provides for the
first time the geometric phase for an arbitrary infin-
1tesimal triangle in 2. Also, it is interesting that this
was done by a group theoretical argument and not by
integrating the curvature along the surface.

(25)
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