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We present a general formalism for doing the perturbation theory in the complex energy 
plane, where the notion of the generalized quantum mechanical systems is used. This 
formalism is applied to the Friedrichs-Lee model. It reproduces the results of the exact 
solution, where the spectrum of the generalized quantum mechanical system consists of a 
discrete complex energy pole and a continuum spectrum (which passes below this discrete 
pole) in the complex energy plane. We also investigate the role of the "complex delta" 
function in the description of a resonance state. The unboundedness of the spectrum appears 
to be the very ingredient needed to give rise to a pure exponential decay. 

I. Introduction 

Recently Petrosky, Prigogine and Tasaki [1] investigated the Friedrichs-Lee 

model [2] based on perturbation theory. They found that the spectrum of the 
system may be described as a sum of a discrete resonance state and a 

continuum spectrum along the positive real energy. This conclusion differs 

from our earlier work [3-5] based on the analytic continuation of the exact 

solution of the model. There we found that accompanying the discrete 

resonance state, the continuum spectrum must be defined along a contour in 
the complex energy plane which passes below the resonance pole. It is curious, 
what is the origin of this difference? 

A closer look reveals two important ingredients in their analysis, first is the 
use of perturbation theory and second the expansion of the wave function in 
powers of the imaginary part of the resonance energy. In our work in this 

paper we avoid any divergence difficulty by doing perturbation theory in the 
complex energy plane. One may also want to further explore whether there are 
features in the theory which are more clearly revealed in the perturbation 

approach. 

Elsevier Science B.V. 
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Perturbation theory in the complex energy plane is to our knowledge novel. 
The application of the perturbation theory in the complex energy plane could 
be an effective means to study the resonance properties of the system. 

Earlier, based on solvable models we have investigated various quantum 
mechanical systems in the complex energy plane by working with the "general- 
ized quantum mechanical systems". To supplement our solvable model work 
on such generalized systems, we now proceed to consider the perturbation 
theory of these systems. 

The usual textbook approach to perturbation theory in quantum mechanics 
is the Rayleigh-Schr6dinger perturbation method [6] where the wave functions 
and the eigenvalues are expressed in powers of the coupling constant g, 

~(g)  = % +gq,(1) + . . .  +g,q,(,) + . . .  (1.1) 

Z(g) = A o +gZ 1 + .-- +g"A,, + --- . (1.2) 

Then from the eigenvalue equation 

(Ho + gV)q,(g) = q,(g) (1.3) 

one obtains the corresponding equation for each order of gn. Despite the 
textbook exposition of the method, there seem to be essential complications 
just beyond the second order. Further, the method appears to be very 
cumbersome in higher orders. In this work we will follow an alternative 
method based on the Green's function approach [7], used in field theory 
discussions. In section 2, in the framework of generalized quantum system, we 
will discuss the wave operator and the corresponding eigenvalues in perturba- 
tion theory. The results of the perturbation calculations for the generalized 
quantum system as applied to Friedrichs-Lee model are presented in section 3. 

We do perturbation expansion on the inverse of the Green's function for the 
Friedrich-Lee model and in the zeroth order of the perturbation expansion the 
discrete spectrum is the V particle. Consider a typical situation where the bare 
mass of the V particle is above the threshold of the continuum channel. As the 
interaction is switched on, the discrete state moves away from the real axis on 
to the second Riemann sheet. One may deform the contour to expose this 
resonance pole. It eventually leads to a general ized  spec t rum consisting of this 
resonance state together with the continuum spectrum def ined along s o m e  

con tour  F. The latter are essential components for the complete specification of 
the generalized spectrum. 

In section 4, we investigate the related question of the role of the "complex 
delta" function in the description of a resonance state. We observe that the 
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pure exponential decay may be obtained when one passes from a lower 
bounded weight function to its analytic extension with support on the full real 
line • rather than the semi-infinite real line R +. It appears that the unbounded- 
ness of the spectrum, which violates the general property of the quantum 
system and also of the generalized quantum system, is the very ingredient 
needed to give rise to a pure exponential decay. The main thrust of the present 
work is summarized in section 5. 

2. Perturbation theory and the generalized quantum system 

2.1. The wave operator 

Consider a quantum system with the Hamiltonian 

H =  Ho + V , (2.1) 

where the free Hamiltonian satisfies 

Ho~o -- Z@o, (2.2) 

and the full Hamiltonian satisfies 

HqJ = (H 0 + V)~b = z~0. (2.3) 

Introduce the unnormalized wave operator which transforms the free particle 
wave function ~0 0 to the unnormalized wave function $un, 

~Jun -~- ~'~un ~J0 • 

Denoting the difference by 

A~b = ~bun - ~O 0 

the eigenvalue equation of (2.3) becomes 

(Ho + V)~Oo + H A~O= Z~Oo + Z AqJ , or 

Thus 

~ b u n = ~ o + A ~ b = ( l + z ~ l H V ) ~ b 0 -  i 

where the free Green's function is 

(2.4) 

(2.5) 

1 
_ Go  V qJo, (2.7) 

1 
A@ - z----~-~ V@o . (2.6) 
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1 
G ° ( z )  = z - H o " (2.8) 

The u n n o r m a l i z e d  wave operator is given by 

1 ~ (CoV)". 
Ou"  - 1 -  G o V  ,=0 

(2.9) 

So far we have not paid attention to the renormalization of the wave function. 
In particular, for the renormalized wave function g, there is the corresponding 
r e n o r m a l i z e d  wave operator g2, with the relation 

g = O g  o . (2.10) 

In the complex energy plane, the scalar product is defined to be the inner 
product between the wave function and its dual, where the dual wave function 
is defined by 

~(z) = g * ( z * ) ,  ~(z) = ( ago )  = g ,oa .  (2.11) 

So the scalar product is 

(~un [ gun) = (~01 g)~,a~ng0) -- (t~0D2g0) (2.12) 

or the renormalized wave function: 

g = ~-~g0 -1  =OunD g0, g2=OunD-1 .  (2.13) 

In a multichannel case, it is convenient to define the free wave function in the 
basis where for the ith free wave function, only the ith element is non 
vanishing. With this choice of the basis vectors eqs. (2.12) and (2.13) can be 
generalized to 

2 (2.14) ( $o,O2 goj) = O,j  , 

and 

= ( a u n ) j i D T k l g o k ,  with g2jk = ( a u n ) j i O i k  1 . (2.15) 

Note that 0 2 and by choice D-1 commute with H 0. Hence eqs. (2.3) and (2.4) 
are unaffected by the renormalization. This construction yields the perturbed 
wave functions to all orders. 
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2.2. The eigenvalues 

Our analysis so far does not tell us the location of the singularities of the 
wave operator  g2 except the generic result that they are at the spectra of H.  As 
mentioned earlier we shall follow the conventional approach in field theory and 
work with the perturbation expansion of the Green 's  functions. The full 
Green 's  function is given by 

1 1 
G(z) - z - H - 1 - GoV GO. (2.16) 

The spectra are obtained from the singularities of G(z) which are, apart from 
the spectrum of Go(z), the zeros of the denominator ,  that is the place where 
Go(z ) V= 1. It is possible in exceptional cases, for part of the spectrum of Go 
to be cancelled by the zeros of 1/(1 - GoV); that is by the poles of 1 - GoV. 
Note that since the left-hand-side is a matrix and the right-hand-side is a 
number we are really talking about the eigenvalue of Go(z ) V. 

3. Perturbation solution of the Friedrichs-Lee model 

The Hamiltonian for the Fr iedr ichs-Lee model and the corresponding 
equation for the free wave functions and that for the total eigenfunctions in the 
lowest sectors are given by 

. 0 ( o  0 0 ) 
oJr(o~ - ~o') and V =  w) 

H0qJ 0 = z %  and H q , = ( H  0 + V ) ¢ = z ~ 0 ,  

f(,o ')) 
0 ' 

(3.1) 

where the variable oJ is defined to be along some contour F in the complex 
energy plane, and 37(oJ) =f*( to*) .  

3.1. The unnormalized wave operator 

In evaluating the wave operator ,  it is convenient to regroup the perturbat ion 
series in terms of those which are even power in GoV and those odd in GoV, i.e. 

c¢ 
~'~un = E (GoV) n = ~-~euVen -[- oodd ,  ( 3 . 2 )  

n=0 

where 

a~u~ ~" = 1 + (GoV) 2 + (GoV) 4 + -- .  a n d  ,.~°dnd = GoVa even . 
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We proceed to evaluate the even part,  

(1, no o// o l° 7o) 
CoV= a ( to_  to,) ~(to) • 

0 A - t o  to') \ a -  to 

Note that the isolated zero of (1 - GoV ) occurs at a - M for 

f f(to") f(to") dto" 
(-~_---m~o)( A T - ~ )  = 1 ,  

(GoV)2 = i----~ ("" > 

with ( " " )  = f dto 

/((-.>~ 
(GoV)4 = (\)t  7 ° ' ]  

o ) 
~(to) r(to') ' 
,~-Z- ~o (A - mo) 

i(to) s(to) 
/~--O) ) 

o ) 
~(to) ( . . . >  _~(to,) • 
ft T ~  A m o A - m o /  

The even part is given by 

(...> +((_.)~2 
l + A_m----~ \ A - m o /  

0 

+ . . .  o ) 
~(to) i(to')  " 

~(to' - to) + ~ - 7 o  ~ (a )  / 

(3.3) 

The odd part is 

0 

g2°dd = G°VJ2;"e" = f(to)__ A - m o 

\A-to -~TXY 

f(to 
'----)-) + T-----  ~(a) 

0 

/~ - m  0 
(3.4) 

(. 0 ) 
-- ~ 

\ x -  to ~(a)  

(3.5) 
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Using (3.3) and (3.5), (3.2) becomes 

/ _~- mo $(o~) \ 

) aun ~[(O)L A - m °  ~(¢D -- ¢.O') -[- f(¢O) f(O)'). " 
(3.6) 

\ A -  ~0 .(A) X-7o .(A) / 

For definiteness, we consider the wave operator, with the eigenvalue of the 
discrete state labelled by M, where a(M) = 0. For the resonance pole, M is a 
complex number. It gives 

/ A - m  0 , f(to') 

= /  (A - M)a~ a ~ )  ] (3.7) 

au. ~. -*-..-7~% I(~)- ~(~-  ~') + ?(~) s(~') ' 
\ ( A - M ) .  A-o)  A--Z~o a ( A ) ]  

For the discrete solution, we have used: a (A)=  ( A - M ) a ' ,  with the slope 
a ' =  (da/dA)l~= M. The pole of G o at A = m o is cancelled by a zero of ( 1 -  
GoV) -1 at A = m 0. 

3.2. Renormalized wave operator 

We proceed now to evaluate the appropriate matrix to incorporate the effect 
of renormalization, 

D2 : fiun~,~un__ (Be 0 ) (3.8) 
Bx'x " 

We leave it to the reader to verify that the off diagonal elements do vanish. 
The (1,1) element is given by 

/ _~-mo \ 

B1 = \ ~(,~) ' -~-(~) ~.~ - m o f(og) ] 
\ a(h)  M - c o /  

( A - m ° ) 2  (1 + f a~ £(~) s(~)~ 1, ( h - m o ~  2 (3.9) 
- ~(a)~(a) ( M - w ) : / = - a - \ A - M ]  ' 

where 

f ~(o>)s(,o) 
a ' = 1 +  do (M-co)  2 
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was used. And the diagonal elements for the continuum are given by 

Bx, x = 6x,(to) Dx(to ) 

( '+ / 
= \ a ( ~  ) ' a ( ~ '  - ,o) + (;~ _ o~)~(~ )/ a(~ _ ~o) + y( ,o )  f ( ~ )  

;~ - o~ a( ,~ ) l 

~(~') f(~) f(A) 7(~') [(A') f(~) 
- a ( ~ ' )  a ( ; 0  + ~(;~' - A) + (;~, _ A ) ~ ( A ' )  + (;~ - ;~')~(~) 

f(A') -1 (~A~) a(A) 1If(A) 
+ ~--(-~-) A-A'  A-A'  k ) a - - ~ = ~ ( A ' - A ) .  (3.10) 

To arrive at the last term in the second last step, the following identity was 
used: 

f f(to)f(to)dto 1 ~ a(A) 1). (3.11) 

Collecting the terms, we get 

\ O//(a-m°~2 1, ) D2=|kA-M/ "-d-- 0 . (3.12) 
a ( a - a ' )  

Notice that the renormalization, in this case, only affects the discrete state 
wave function, not the continuum state wave function. The D 2 matrix implies 
that 

[(A-m°~ V'-d-;a'l ) = / o 

a n d  D 2 - 1 @ ) =  x/-gT~' X--m--~o 0 . ( 3 . 1 3 )  

0 a ( x  - ,o) 

So the renormalized wave operator is 

/ 2  = Oun D-1 
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/ ~--mo 
=/ 

\ ( a - M ) a  M - o )  

= 1 )~(o)) 
V~-v~, M -  o) 

f(o)) f(o)') 
a(o) - o)')  + ,  _ o) ,~(a)  o a ( a  - o)')  

~ ( a  - o)) + f (o))  f ( A )  " 

It is gratifying that the results obtained here through perturbation calculation 
are the same as those obtained from solving the theory exactly [3]. This is, of 
course, not unexpected. We have seen that by applying perturbation theory on 
the generalized quantum mechanical system, one arrives at the spectrum which 
contains explicitly the discrete "resonance" state together with the deformed 
contour which is a necessary component in the specification of the generalized 
spectrum. Since the generalized spectrum is completely equivalent to the 
spectrum of the original theory defined along the real axis, the generalized 
spectrum would imply for instance the non exponential decay character near 
the time t =  0, i.e. the presence of the Zeno region [8] in the survival 
probability. 

4. Lower bounded support, complex delta function and pure exponential 
decay 

We begin with several definitions. Denote the spectral function of a quantum 
system by o-(o)). The corresponding temporal function, which is its Fourier 
transform is given by 

t~(t) = f do) tr(o)) e - ' ' t  (4.1) 

When the spectrum is lower bounded, L is finite. An unbounded spectrum 
corresponds to having L = - ~ .  The initial temporal function, i.e. the function 
evaluated at the initial time, t = 0, is given by 

~(0) = i do) o-(o)). 
L 

(4.2) 
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We proceed to consider an unstable quantum system, which is defined by 
including a term of the type 

oo 

f d~o p(a 0 8¢((o - z ) ,  
0 

where the "weight function", p(to) is the restriction to the semi-real axis R ÷ of 
a function analytic in the lower halfplane. The complex delta function 8 c is the 
so-called Gel ' fand-Shilov complex delta function [9] (a generalization of the 
delta function along a contour considered by Nakanishi [10] and by Sudarshan, 
Chiu and Gorini [3]). Its contribution to the initial temporal function is given 
by 

oo 

ff',(O) = f dto p(oJ) 8~((o - z , )  = p ( z , ) ,  
0 

(4.3) 

where p ( z )  is obtained as the analytic continuation of p(o)) to the complex 
point z 1. When z is real, ~c(to - z) reverts back to the usual Dirac g-function. 
The integral ranges from 0 to 0% because along the negative real axis, p ( z )  = O. 
The time translation operation on the temporal amplitude is constructed in the 
following manner: 

T(r)  (7(t) = f dto e-iO"[o'(to) e -i'°'] = (7(t + r ) .  
L 

(4.4) 

If the spectral function contains a complex delta function factor, the temporal 
function becomes 

oo 

(7(t) = f d(o p((o) So(to - z , )  e i`°t = p ( z , )  e -izlt . 

0 

(4.5) 

Superficially this would seem to offer an example which says that a spectrum 
bounded from below could lead to a purely exponential decay. This is a 
misleading interpretation, however. We recall that the weight function may be 
analytically extended through the use of Hardy class functions defined by 

c~ 

1F+ (z) = -~-~-]" dto 
0 

p(,o) 
o J -  z +i~  ' 

(4.6) 
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+1 i ~_ (z) = ~ - dto 
o 

to - z  - i e  " (4.7) 

Here  p( to )  is expressed in terms of the sum of two analytic functions !/*+ (to) and 
~_ (to). One can also verify that for the time translation operation forward in 
time 

T( t )  aF+(z) = ~ + ( z ,  t)  and T ( t )  g t ( z )  = 0 .  (4.8) 

For the backward time translation, we have 

T( t )  ~+(z) = 0 and T( t )  gr_(z )  = gS_(z,  t ) .  (4.9) 

Now it is instructive to look at the integrand of eq. (4.5). For definiteness, 
consider the case of forward propagation. The integrand may be re-expressed 
in terms of its analytic extension Pext(Z)= g'÷(Z), 

oo 

f do~ p(~)  ~¢(~o - z , )  e - i a ,  t 

o 

f , 1 (  , ) --+ d z  Pext (Z + - Z --  Z 1 --  iE e - i Z t  
- o o  

1 
z - z ~  + i e  

1 l" Pext(Z)  e - i Z t  

2"rri J dz z - z  l + i E  ' (4.10) 

where in the last step we use the fact that for positive t the integral can be 
closed in the lower halfplane. Since the second term does not contain 
singularity in the lower half-plane the integral vanishes. Only the first term 
survives, which involves integrating over the unbounded spectrum, which 
extends from -oo to oo. Thus for t i> 0, we have 

f dw p(a 0 B~(o9 - z l )  e -i''t = 1 PCxt(Z) e -i~t 
2'rri dz z - z 1 + ie 

0 - - o c  

= [Pex t (Z l )  e - i ' ' ' ]  e - r t / 2  ( 4 . 1 1 )  

The last step is obtained by closing the contour of integration in the lower 
halfplane, which picks up the pole contribution as z = z I = m - iF~2,  leading to 
a pure exponential decay as displayed. 

We see that the delta distribution for complex z, is really defined only for 
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p(oJ) which are restricted to g~+ of analyt ic  functions and the computation uses 
an ordinary function on the Hardy class function q'+ = Pext which is the analy t ic  

ex tens ion  of p(oJ) to - ~ < o ~  <0% so there is no mystery in getting the 
exponential decay. Also we observe that the analytic decomposition of eqs. 
(4.6) and (4.7) may be carried out for any  integrable function p(o~), not 
necessarily analytic. So our result of eq. (4.11) is general. 

5. Summary 

We have studied the perturbation theory of Friedrichs-Lee model in the 
generalized space where the energy variable may be complex. We find that the 
conclusion which we reached earlier based on a solvable model continues to be 
true in perturbation theory. When doing the perturbation theory, to avoid the 
convergence difficulty, one needs to deform the contour to expose the 
resonance pole contribution, in order to be able to isolate the discrete state 
contribution. In this case, the continuum states must be defined along a 
contour which passes below the resonance pole. In other words, the corre- 
sponding continuum spectrum in its entirety cannot be along the real axis. 
Furthermore, by applying the Cauchy theorem the generalized spectrum 
obtained containing the second sheet discrete state and the continuum states 
along the contour, is equivalent to the Friedrichs-Lee spectrum along the real 
axis. In this sense we disagree with the assertion of Petrosky, Prigogine and 
Tasaki that within the perturbation theory, the system admits a discrete 
spectrum plus a continuum spectrum defined along the positive real axis. 
Although the use of the notion of the complex delta function gives the 
appearance that a pure exponential decay results from a lower bounded 
spectrum we explicitly display, through the use of analytic extension, that pure 
exponential decay property is directly associated with a spectrum which is not 
bounded from below. 

In this paper, we have arrived at a spectral decomposition for a generalized 
quantum mechanical system. We define the spectrum as the singularities of the 
full Green's function. We find a continuum along a complex contour and 
possibly a discrete point spectrum which may be exposed by a proper choice of 
the contour. 

This spectrum differs from that obtained by Petrosky, Prigogine and Tasaki 
where there are a discrete complex energy pole and a continuum spectrum 
along the positive real axis. They defined the spectrum in a nonstandard 
manner. Their spectral decomposition cannot be derived from the singularities 
of the Green's function. #1 

*' We thank Professor Tasaki for clarification on this point. 
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