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Quantum mechanics gives us information about the spectra of dynamical variables and transition rates
including scattering cross sections. They can be exhibited as spectral information in analytically contin-
ued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study
scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with
the scattering of composite or unstable particles. Scattering theory needs an amendment when the in-
teracting system is not isospectral with the free Hamiltonian; the amendment is formulated. Perturba-
tion theory in generalized spaces is developed and used to study the deletion and augmentation of the
spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting
system is obtained. The question of the breaking of time symmetry is discussed.
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I. INTRODUCTION

Quantum-mechanical systems are usually defined by an
algebra of operators over the field of complex numbers
acting as linear operators on a vector space of states with
a defined inner product [1]. The vector space is usually
taken to be a separable Hilbert space [2]. In a series of
papers during the 1970s it had been shown that the Hil-
bert space structure can be generalized in two directions.
The first is to consider pairs of dual vector spaces that are
analytic continuations of dense sets of analytic vectors,
which are realizations of the Hilbert space. This leads to
generalized quantum mechanics [3]. The second intro-
duces non-normalized vectors and a wider class of func-
tions realizing vectors, with a suitable set of dual vectors
[4]; when this is done in the context of eigenvectors be-
longing to the continuum one gets the rigged Hilbert
space [5]; but the formalism of dual spaces is more gen-
eral and makes it unnecessary to start with Hilbert spaces
and self-adjoint operators acting on this space [6]. In this
paper we continue our study of generalized quantum
mechanics in terms of dual spaces.

Much of the physical interpretation of quantum
theories include expectation values and transition proba-
bilities of chosen dynamical variables with a preassigned
basis. But the generic properties of the system like spec-
tra of operators are identified with physically significant
properties of the system. In previous studies it has been
shown that the notion of the spectrum of a (self-adjoint)
dynamical operator in generalized quantum mechanics is
not unique and does depend on the context in which it is
evaluated. Rather than consider this as an inconvenience
we may view this as an opportunity to obtain resonance
frequencies and widths as spectral information. This is,
in a sense, the realization of the Heisenberg program for
atomic physics, in which spectral intensities, frequencies,
and polarizations should enter directly into the quantum
theory of the atom. We may attempt to realize transition
rates as spectral information in generalized quantum
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mechanics. This goal has been partially achieved in ear-
lier papers, but in this paper a more comprehensive pro-
gram is implemented.

The first systematic treatment of analytically continued
spectra was undertaken in the theory of master analytic
representations of noncompact groups [7]. Inspired by
the “unitary trick” of Weyl and the complex rank tensors
(“extensors”) of Dirac and the “exspinors” of Harish-
Chandra [8], in the theory of master analytic representa-
tions one uses shift operators (E, in the sense of Cartan)
which increase the continuous eigenvalues of self-adjoint
operators by complex values; these are then interpreted
as linear functionals on analytic functions. This method
was applied to finding all irreducible representations of a
variety of noncompact groups obtaining all the irreduc-
ible representations from the specialization of a generic
“master” analytic representation [9].

The analytically continued spectra came up in the for-
mulation of solvable models in the context of unstable
particles [3]. Analytically continuing the complete set of
(ideal) states for the Dirac-Friedrichs-Lee model we have
shown how families of generalized dual vector pairs can
be constructed and with full mathematical rigor [4,10].

These considerations can be extended from the vector
space treatment to the density-matrix treatment, especial-
ly in the context of time evolution. The Hamiltonian
evolution is replaced by the Liouvillian evolution.
Despite the lack of semiboundedness of the Hamiltonian,
the Liouvillian evolution can also be analytically contin-
ued. On analytic continuation we encounter the metasta-
ble excitations of the density matrix and the decaying
components of the density matrix [3,11].

Many of the questions of scattering and decay that
arise are not the intrinsic property of one Hamiltonian
but the properties appropriate to a particular realization
of that Hamiltonian operator. In the case of scattering it
has long been emphasized that we have to consider two
Hamiltonians, the true “total Hamiltonian” and an isos-
pectral “comparison Hamiltonian” [12]. While some-
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times the comparison Hamiltonian is identical with a
“free Hamiltonian,” this is neither necessary nor desir-
able. The free Hamiltonian is generally not isospectral
with the total Hamiltonian. The specific requirement of
being isospectral (with the proper multiplicity) enables us
to get a unitary intertwining between the total Hamiltoni-
an and the comparison Hamiltonian, while the use of the
free Hamiltonian only achieves isometry rather than uni-
tarity for the intertwining Moller operator. There are
also other problems with wave-function normalization
that are encountered by those who rely on asymptotic
conditions and free Hamiltonians. This notwithstanding,
scattering is a property of the relationship between two
Hamiltonians.

The use of the generalized spectral decomposition is
useful in other areas of physics, including optics and
dynamical maps. In the applications to maps it becomes
quite clear that dual pairs of vector spaces are the ap-
propriate framework for dealing with generalized spectra.

In Sec. II we formulate analytic Hamiltonian systems
and demonstrate the generalized spectra in the dual
spaces. For the state vectors we compute the survival
amplitude and demonstrate that they may be computed
in any pair of the dual spaces. The discrete and continu-
um states at complex energies are demonstrated and the
resolution of the identity (completeness of states) is
demonstrated for each pair of dual spaces. The case of
potential scattering is an important special case. The for-
ward and backward time evolutions are compared and
the appropriateness of specific pairs of dual spaces break-
ing the time symmetry is pointed out. The corresponding
development of the density matrices is also explored.

In Sec. III we explore scattering states with a total
Hamiltonian separated into a free Hamiltonian and an in-
teraction. The general solution is given and the problems
that arise when the free Hamiltonian and the total Ham-
iltonian are not isospectral are pointed out. When bound
states enter scattering states as a constituent, further
complications do arise. The method of resolving these
complications is formulated. The time evolution of the
state vector and of the density matrix is examined in de-
tail. A complete set of pseudodensities constitute a basis
for densities. The extremely delicate operations needed
for defining density matrices for energies in the continu-
um make it very necessary to exercise great care in com-
puting the time development. The evolution is still uni-
tary in the Hilbert space, but contains metastable discrete
pseudodensities for the generalized dual spaces. The sur-
vival probabilities are obtained directly. The approxima-
tions in which the evolutions appear irreversible are
briefly sketched. Despite the reversibility of the time
evolution, we can see that exponentially damped evolu-
tion in the absolute value of time was obtained by virtue
of the appropriate selection of the generalized dual
spaces. This choice breaks time symmetry.

In Sec. IV the decomposition of the physical state into
the direct sum of two analytic vectors in a wider space of
generalized states is shown as a further illustration of the
breaking of time symmetry by redefinition of the ‘“states.”
The special time dependencies of the two generalized
pseudostate vectors and their relationship to the Breit-
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Wigner approximation [20] and to the Gamow vectors
[21] is brought out. A model of a decaying system in
terms of an exponentially weighted integral of these pseu-
dovectors is shown to furnish a realization of the semi-
group of time evolutions. In Sec. V the corresponding
decomposition of a density matrix into pseudodensity
matrices in a larger space is discussed and its relation to
the Hilbert transform is demonstrated.

Returning to scattering systems, in which the total
Hamiltonian is isospectral to the free Hamiltonian, we
define in Sec. VI the complete set of invariants for a sys-
tem with N degrees of freedom and exhibit 2N —1 alge-
braically independent constants including the total Ham-
iltonian [12]; N is a complete commuting set. Special
mention is also made of systems with multiply degenerate
spectrum. In Sec. VII we exhibit the analytic continua-
tion of the constants of motion. The evaluation of the ex-
pectation value of these constants of motion is carried out
and they are shown to furnish 2NV —2 constants of motion
in addition to the expectation value of the energy. The
calculations necessarily involve the matrix elements in a
complete basis of generalized vectors or pseudodensities.
The singularities of these matrix elements as distributions
and as analytic functions are also explored, along with
the matrix elements of several simple operators.

In Sec. VIII we study the S matrix and the scattering
amplitude in the Hilbert space and in the generalized
dual pairs of spaces. It is shown to be unitary and
defined over all states of the interacting system with the
correct multiplicity. The question of scattering in the
cases when some of the states contain composite particles
is taken up and the necessary renormalizations of the
Moller operator worked out. The corresponding calcula-
tions for the density matrix are also exhibited and shown
to yield directly observable quantities. The optical
theorem is reproduced in these density-matrix calcula-
tions. The analytically continued spaces may be equally
used for calculating these quantities.

In Sec. IX we develop perturbation theory in the gen-
eralized spaces [13]. The change in the spectrum on in-
teraction is explicitly brought out. Both the (off-shell)
scattering amplitude and the wave functions are comput-
ed; the time dependence of the wave function is recovered
in perturbation theory. The possible incompatibility be-
tween the analytic properties of the scattering amplitude
and the spectrum of states both in terms of redundant
poles [14] and in terms of physical states, which do not
produce singularities in the scattering amplitude, is
demonstrated. Some models with closed-form solutions
that illustrate these results are discussed.

Section X gives a general discussion of density func-
tionals realizing states on an algebra of dynamical vari-
ables that go beyond the ordinary notion of density ma-
trix [15]. It is shown how most of the results discussed
above can be adapted to this perspective and how they
“soften” many of the singularities. Scattering cross sec-
tions are evaluated in this context. The time asymmetry
of these considerations when a cross section appears [16]
is pointed out and traced to the asymmetric treatment of
the energy diagonal initial scattering configuration and
the correlations in the final state.
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II. GENERALIZED DUAL SPACES
AND ANALYTIC HAMILTONIANS

We define a vector space of complex-valued functions
of a set of real variables {A} bounded from below over
the field of complex numbers with the standard linear
operations of addition and (complex) scalar multiplica-
tion. A familiar norm is the L2 norm,

A1
(¢,¢)=[, $*({x}g({x})d{x] , (1)

where, for most applications, we may choose {Ay} ={0},
{A;}={0oo]; this is not essential. The nested projections
II({x}) obeying

AP {p})=T({pI{AD =TI({v}])
{v}=min({A}, {u})TI({A})=0, TI({A,})=1,

(2)

may be defined by
(I })@I({A})=6({A}, {u})d({n}) ,

L, {A}={u}
OUALIED= 10 otherwise ,

with any suitable ordering relation for the sets {A}, {u].
We can also define the operators {A} by

({A}D){A})=A@({A}) . 4

Then by introducing the ideal vectors ¢; of A we can
present the integral representations

(A} = [ (Mg bt dA

(u] )

M((p))= [, dndfudir] -
Aslong as {A;} <{ o} there is a one-parameter family of
“time operators” ‘T conjugate to the “energy” operator A
corresponding to the one-parameter family with the
boundary condition

d({A})—ePp({Ay}) (6)
so that
d*({Ad({A])—d* ({Ao})d({A0}) . M

But when {A} = oo, this demands that ¢({A,})=0. This
space can be completed to a Hilbert space #.

A dense subset of vectors in #f are analytic vectors that
are realized by the square-integrable boundary values of
analytic functions, analytic in some domain 2 of the
complex plane. We could continue these functions within
the domain D to functions of a complex variables {z}
defined along a contour I' from {Ay} to {A,;} with the
norm defined by

J ¢tz sz} z) . (8)

This is a norm preserving map from the dense set of ana-
lytic vectors in 7 to a set of vectors in a space § depen-
dent on I'. ¢ is not yet a Hilbert space since it has to be
completed. In the completion there are vectors that are
not continuations of vectors in #. So the correspondence
between # and § is a correspondence between dense sets.

Note that both ¢*({z*})=¢({z}) and ¢({z}) are vectors
in the same space § and they are in one-to-one antilinear
correspondence.

For any normalized state ¢ the one-dimensional projec-
tion operator to this state is given by the operator

P¢=¢'$ > (9)
or, more explicitly by
(Pa)({zD)=0({z}) [[¢*({z* D {z})d{z'] . (10)

If the state is not normalized we have the scaling factor
-1

J * "Nz (2" (11)

on the right-hand side.

With these results understood we can use the ket and
bra notation for the vectors in & and their dual, but they
must be distinguished from similar symbols in #. For
convenience in writing we write z in place of {z}, etc.
We may then write the analogues of (1), as

(9lo)= [ $z)b(2)dz= [ 4*(z*)(2)dz ,
Py=6){sl{(sl6)} ", (12)
1= [ |z){zldz ,

r

and

b—l2), 19)=[ d2)lz)dz ,
(§l=J ¢*(z*)(zldz .

If in the process of analytic continuation one encounters
poles or branch points, the contour would get snared by
them; new contours can be constructed that include sup-
plementary closed contours encircling the “poles” and
pairs of “branch points.” At this stage the completeness
identity gets modified into

1= [ dzlz)(zl+ 3 12,0z, |+ [ delo)<el, a4

poles

(13)

and the scalar product becomes
(Ylo)= fl_iz(z)d)(z)dz + 39z, Wiz,)
- fﬁ{ﬁ(é‘)(ﬁ(é)d; . (15)

Despite the fact that we use the ket and bra notation it
should be recalled that these vectors are in the space ¢
with the contour I' and therefore the scalar product of
such a state |¢) with a state in 7 also denoted by a ket
|f) may not be defined. In the special case that both |¢)
and { f| are in the dense analytic subset we may take the
vector {¢@| corresponding to (f| and evaluate the prod-
uct in § or, equally well, in #. It must be stressed that
the discrete pole states |z, ) do not belong to the dense
analytic subset; nor do discrete energy states in ¥,
whether bound or in the continuum belong to the dense
set.

The survival amplitude [17] is the correlation function

A(t)=(h,e ~Hap)=((0),9(1)) (16)



computed in #. The same quantity can be computed in
any of the generalized spaces ¢ by

A()=(4(0),¢(2)) ,

where #(¢) and #(0) are the analytic continuations of ¥(¢)
and ¥*(0). Explicitly,

A= [ $*(Me~Mp(M)dA
=fr¢*(z*)e_i"¢(z)dz ) 17)

The survival amplitude A4 (¢) is the same but expressed by
two distinct contours. In the first expression the spec-
trum is along the real line R ¥ from 0 to oo, while in the
second case it is complex along I" from O to . Except
for the end points, no two points of the spectra coincide.
This is a special case of the class of representations of an
algebra, in this case of the Abelian time translation group
T(t), which is realized by

T(t')A(t)=A(t+¢t'), (18)

which is reducible in two completely nonequivalent ways.
The realization may be thought of as direct integrals
along the spectrum:

A= ¢,fR+e_“"dH(7»)1/1]
= |y, fre_iz‘dﬂ(z)lﬁ : (19)
In particular, for ¢ =0,
1=[v, [ a0 ]= [y, [ ancaw | . 20)

It is possible, depending on the nature of the Hamil-
tonian, that the contour I' includes discrete complex
points or even contours encircling new branches that may
arise in the analytic continuation from # to §. Insuch a
case the completeness integrals (resolutions of the densi-
ty) and the spectrum includes these discrete points and
the new branch cuts.

A= [ 7"+ e "Nz + . @D

The cascade model [12], which can be solved in closed
form, exhibits these features under suitable conditions.

A specially interesting case is obtained for the simple
but important case of potential scattering, where we have

H=H,+V,

L2
2mr

2
H=- Yo L [8_+£i

2m 2m {3r2 r Or 2> 22

V=Vvi(r) .

The equivalent one-dimensional effective Hamiltonian is

32 29
ar2+r or ]+

1 2

H:—_
2m

(23)

Vir)+ L 3
2mr

The solutions for unbounded motion belong to the con-
tinuous spectrum and have the form
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. eik’r
u (N=rp(r~e "+ [T,k —dk',  (4)

with T'(k,k’) the off-shell scattering amplitude given by
the solutions of the integral equation

T(k,k")=V(k,k")+Go(K)T(k,k") (25)
where
Vik,k")= [ e ®V(re*"dr=V(k',k) (26)

is the potential as a kernel in the momentum variables.
The discrete complex values for which there is a solution
of the form

u(r)= [ T(k,k")e™*"dk’, u(0)=0 7

are resonant states and may be included in the complete
set of states along with the complex spectrum I'. These
may be one or more resonant states for the system in ad-
dition to any real bound states. Such methods can be
used for precision determination of the position and
width of resonances.

When the analytic continuation is to the lower half
plane the uncovered discrete poles as well as the continu-
ous spectrum have negative imaginary parts, so that for
positive times exp(—izt) has convergence factors
exp(—|Imz|t). Consequently the survival amplitude de-
creases in time for positive times and can be computed by
integration along the curve in the lower half plane [18].
For large but not too large positive values of time the
contribution of the poles dominate. It therefore appears
that the absolute value of A4(¢) decreases as a function of
time. So it appears as if the symmetry with regard to
time has been broken. However, we note that for nega-
tive times the contribution may not be well calculated
this way since the entire spectrum has growing exponen-
tials. Since the spectral measure dII(A) is real along the
real axis there is a conjugate analytic continuation to $*
along a complex-conjugate contour I'*. The spectrum
has a positive imaginary part and hence there is exponen-
tial decrease with |¢| for negative t. The resonant states
are now at z,'. This new representation is appropriate for
the amplitude for negative ¢. So for positive times we use
one complex spectrum and for negative times we use
another. Both senses of time are equivalent, but any
choice breaks time symmetry.

Instead of the time development being considered for
the state vectors, we could consider it for the density
operators, or more generally the linear span of density
matrices. The density matrices are normalized positive
linear sums of projections, or more generally normalized
positive linear operators. Since the matrices are to be
positive they form a convex set rather than a linear space:

p*=p, p=0, trp=1,
) L, ] (28)
cos“fp, +sin“fp,=p =0 if p; 20, p,=0.

If ¢, and ¢, are sets of pairs of vectors in the Hilbert
space we consider the linear operator zna,,tﬁ,,cp:', which
acting on a vector x produces the vector 3 ,a,(¢,,x)¥,.
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T%lese bilinears themselves form a normed vector space p=3a,v, 4,}‘1 (30)
with scalar product
3 a,4,41, 3 ap i, J.’ Ea m (P ¥ N Y1 s 81) is given by
29 : o
) zza"f +.¢,"(}\')f +¢:(A/)e—lkldke+lktdkr .
This Hilbert-Schmidt space is often used as a pre-Hilbert n R R
space. If a dense set of vectors v, ¢, are realized as ana- (1)
lytic functions of the energy variable, the time depen-
dence of This can be rewritten,

J

zaf dx[f”zp,, x+ é* |2

2 ‘ivth]

A—% dA tdv (32)

— ® —ivt ® A _+_£ *
Sa,[" e ‘fwzwn [ > |4
This time dependence has an analytic continuation (when v¥,,4, belong to the dense set of analytic vectors) given by

p=3a, J. dk[f n
where I'; are open contours from —2A to 2A lying entirely within the domain of analyticity of the {¢,,4,}. In this

minimal analytic continuation only v is made complex with A remaining real. We also note, in passing, that while the
spectrum of v goes from — « to o, for larger values of |v| there is less of the integrand

le b

Instead we could have a nonminimal analytic continuation in which both A and v are made complex into § and z. Then

p=3a, fcdé{fr;w,,

where I'; are open contours from —2¢ to +2§ with ¢ lying on any complex contour C chosen to go from — to «.
We could write this in the form

t)'—za fdze ’"lf ¥,

where C, are contours for 2z to o (with z lying on the contour I from — o to ).
The equation of motion of the linear span of the density matrix given by the Liouvillian

¢n }"_Z—

+
A 2

e“'"dz] , (33)

A+ dA .

A

*
£ =5 e

*
I

THidy ] , (34)

z
+ £
§2

§+ ¢ 6"~

Z_ldc } , (35)

92— fp=(1,p1 36)
acts by
f‘—f,f—=za,,fcd§[frgz¢n c+on e e‘*’”dz'
~2a fdzze mlf«p,, g+ ot [g'—— dg] 37)

If {9, (L)} give an analytic basis in 7 so that the resolution of the identity
S ¥, (AP, (A)=8(A—1L") (38)
obtains, then an analytic basis for the Hilbert-Schmidt space # of the bilinears is furnished by {¢,(A)¢},(A")}. The an-

alytic continuations are given by the set {9,({+z /2)¢y;,(§* —z* /2)} furnishing a basis for the space & of the bilinears.
For any of these basis elements the time dependence and equation of motion are
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v Ké'—% }—»m ‘

¥n

* t_z_‘_
v [g 3

z

z

*

A

When the spectrum of energy is continuous these vectors
in &, like their primitive counterparts in &, are ideal vec-
tors, and physical states would involve suitable integrals
over them.

III. SCATTERING

Let us now consider a quantum system defined in a
Hilbert space # with a Hamiltonian

H=H,+V, (40)

where H is a free Hamiltonian for which we know ex-
plicitly the ideal states in the continuum (and the proper
eigenvectors for any discrete states). The ideal states are
not normalized and are therefore not in #; to get proper
states in 7 we should take square-integrable linear com-
binations of these ideal states. If i is a vector, possibly
an ideal vector that is an eigenstate of H, and ¥ is a cor-
responding solution of H, so that

Hiy=A¢; ,
(41)

Hopor=Aop
then

[1=Go(MV ] =tp, (A—Hy)Gy(A)=1. 42)
Hence

h=[1=Go(MV] Y=Yy , 43)
which may be formally written as the power series

y= io[Go(A)V]"%. (44)

The operator €’ is a candidate for the Mdller [19] opera-
tor ) in the sense that

HO'=Q'H, . 45)

But €’ is not necessarily unitary (or even isometric). By a
suitable renormalization we can obtain a unitary Moller
operator ). There are still some questions regarding the
spectra of H and H,,.

The full Green’s function $(A) is given by

g(k)=—fl——

Py =[1—Go(AV] 1Gy(A) . (46)
By inspection it appears as if the singularities of $(A) and
Gy(A) are the same, and therefore H and H|, are isospec-
tral. This is not necessarily true since (1) can have ad-
ditional  singularities from the first factor
[1—=Go(A)V]1~ 1. This corresponds to not only bound
states produced by the interaction but also continuum

—izt-i
dt

] . (39)

§+—§~,tl¢;. [g*—%r

¥n

|

o lg*—%},t

¥4
=t

[

states in which one of the constituent particles is compos-
ite (so that its mass gets shifted). In addition, some of the
singularities of G, may be canceled by the vanishing of
[1—Gy(M)V]~L. Thus 9(A) and Gy(A) may not be, and
generally are not, isospectral. The notion of “perturba-
tions vanishing at infinity” leading to a naive asymptotic
condition for scattering systems is not valid generally.
The new spectra introduced by (1—G,¥)~! do not ap-
pear with a canonical weight; this is the cause of the lack
of normalization for the Mdller operators (1—G,V)~ L.

This problem is easily corrected by defining

Q=(1-Gy,V)"'p7!, 47
where
D*=(1-VG{) ' (1—G,»)!. 48)

For nondegenerate states this is a numerical scaling, but
for degenerate states ) may be nondiagonal in the degen-
erate channels.

An important quantity in scattering systems is the off-
the-energy shell scattering amplitude defined by

T(A)=V[1—Gy(A)V]!
=23 VIGo(MV]" . (49)
n=0
This operator satisfies the integral equation
T(M)=V+T(A)Gy(A)V . (50)

In terms of T(A) the exact scattering state vector ¥, may
be defined by

h=vo+ [ (Y. T(AY 16, (A Mg,de . (51)

At this point it is convenient to introduce a modified
Dirac bra and ket notation for the ideal eigenstates. We
denote them |A)) and |A), so that

HAD=AA), HolA)=AA) .
Then |A)) satisfies the integral equation
IAN=1M)+ [(VVIANA—v+ie)  v)dy
=)+ [ITIAA—v+ie) ! |v)dy .
The Moller operator obeys the following relations:
Q= [drlM) €Al af= [arlanal,
(52)
HoQ= [dAAA)(A|=0QH .

These considerations can be carried out for analytic
Hamiltonians for the generalized dual spaces € and §.
The spectral variable A is now replaced by a complex



2012 E. C. G. SUDARSHAN 50

variable z with possibly new thresholds and/or discrete
complex poles appearing. The space § now has vectors
|z),|z)) with the dual space 9* having (z|,{(z|. The
equations are just the same as above with A replaced by z
with the understanding that it runs over all the spectrum
in §. The i€ in the definition of the Green’s function is to
be understood as the replacement z —z +i7, where 7 is a
complex infinitesimal vector in the direction normal to
the contours I' in the positive sense. The discrete com-
plex poles z, in [1—G,(z)V] 'Gy(z) now have the time
evolution factor exp(—iz,;¢). The dual vector will have
the dependence [exp(—izTt)]* =exp(iz ) and therefore
their product remains unity independent of time.

There is another quantity of interest, which is the sur-
vival amplitude:

D=(¢,e " Hyp)=(4(0),¥(1))

For a discrete complex pole,
={zle "z ) =exp(—iz;t),
and then the survival probability is
P(t)=| A(t)|*=exp(2Imz,t) . (53)

With the poles in the lower half plane,

Imz;=—1y <0 so that P(t)=exp(—yt) . (54)
Therefore, if we could realize the state corresponding to
the complex pole by itself it would die down for positive
times. So time symmetry is broken, positive times corre-
sponding to decay.

For negative times the survival probability exceeds uni-
ty since it becomes

exp(—yt)=exp(y|t]))

This is unsatisfactory and unacceptable. But if we took
an analytic continuation into the upper half plane to the
space §* (with the real analytic nature of the Hamiltoni-
ans H,H) and the interaction V, there is a complex pole
at z}, and for ¢ <O the “survival probability” is less than
unity for ¢ <0. Though we have talked about single
poles, this applies to any complex singularity, isolated or
continuous, including complex branch points. Thus by
taking one or another analytic continuation to § or &%,
we get generalized states with complex energies appropri-
ate for “decaying” states for positive or negative times.
Thus both time senses are equivalent, but the choice of
the appropriate analytic continuation breaks the time
symmetry.

The unphysical choice of the discrete poles by them-
selves in § and §* corresponds to the approximation of
choosing a real physical state by a state in an “extended
energy” space where the energies go from —c to + .
Then the Breit-Wigner energy distribution may be chosen
as the unstable particle ‘“‘state” for positive times since
they give the characteristic decay for the survival proba-
bility [3,4]. For negative times the complex-conjugate
function may be chosen. We will return to this topic in
the next section.

IV. BREAKING OF TIME SYMMETRY

Given a physical state vector which is a suitable super-
position of energy ideal eigenstates of the total Hamil-
tonian and of the discrete bound states, the state and its
survival amplitude may be written

W) =3 a,|A, N+ fnma(k)M))dx, A, <0,

:(¢je~er|¢> (55)
-zla e +f ()% ~™Md .

In case we choose a, =0, the survival amplitude is an an-
alytic function of ¢, analytic in the lower half plane. Then
by virtue of the Paley-Wiener theorem it has been shown
by Khalfin that A4(¢) cannot be strictly exponential for all
values of ¢; for sufficiently large ¢ the exponential
behavior must not obtain. On general grounds of the re-
quirements of threshold behavior on a(A) we can con-
clude that A (¢) should fall off only as an inverse power of
L.

Can one consider generalized systems in which we have
a strictly exponential decay? This would obtain if a(A) is
the boundary value of an analytic function a(z), analytic
in the upper half plane. Such an a(A) must necessarily be
nonzero for A <0. We seek a generalized state satisfying

6)=[" ar)dnr,

A= [" la)

For strict exponential decay this survival amplitude
should get contributions from only a single point z; in
the complex contour integral

: (56)
|Ze~1ktd}¥ )

f a(z)a*(z*)e "“dz=const X 2mie

C
More generally, we do have the complex contour integral
in the upper half plane.

Such analytic quasiphysical states can be obtained
from a physical state by a Hilbert transform:

M’J')_ 21 ff A

A similar state |¢_) is obtained to represent the quasi-
physical state for negative times:

|k))dk dx . (57)

6 >—Eff0 - )\, oA Ddndh. (58)
Clearly,
6 )+l )=I¢)

is a physical state, and for square-integrable states |¢)
this decomposition is always possible. The survival am-
plitude is the Fourier transform of a function analytic in
the lower half plane; hence A4 . (t) vanishes for ¢ <0, but
|4, (t)]<<1 for t>0. Similarly, A _(z) vanishes for
t>0,but |4_(t)| <1fort<O.

When the analytic continuation from # to § is con-
sidered, we have a generic state
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|1/J>=fra(z)lz Ydz+3 a,lz,)

with the survival amplitude

A(t)=fra*(z")a(z)e_"z'dz-i-za,,‘a,, . (59)

This quantity A4(z) is the same as the survival amplitude
for |¢) computed earlier, but now computed by analytic
continuation. Hence it cannot be strictly exponential.
But the decomposition into the two quasistates with the
variable z running from — o to + 0 can be made here
also. We construct a complex contour I'' from — o to
+ o by adjoining a contour I'; from — o to 0 and join-
ing it with I'. Then we may write

[W)=Il¢, ) +Is_),
¥ (60)
_x1 a(z) .
l¢i>—217'i r'(frz—z’j:indz
an
+m IZ)dZ .

Then | ) is analytic by construction above I'" and |¢_ )
below I'". The replacement of |¢) by |¢.) for t20
breaks time symmetry.

If the generalized quasistate is given by a sum of two
discrete complex states,

l)=(lz,)+lz})),
then the quasistates |1, ) are given by
1 1

2mi v z—z,

g y=-1 L

2mi z—zf

¢4 )= lz)dz , (61)

|z)dz . (62)

The quasistate |¢, ) has the familiar Breit-Wigner [20]
form in its energy dependence. The complex energy state
in § with energy z, is sometimes called the Gamow state.
Again we see that for £ 20 we choose two distinct Gamow
vectors |z;) and |z} ), breaking time symmetry. The
quasistate |¢_ ) is the state obtained from |¢, ) by time
reversal.

The Gamow vectors [21] have a pure exponential time
dependence and hence furnish a realization of the semi-
group of positive time translations:

¢, 7)=e H7|$, ), >0
T(T)|¢+>= 0 T<0. (63)

The state |¢_) furnishes a realization of the semigroup
of negative time translations

e—iHT|¢_), 70
T(T)|¢_)= 0, 750 . (64)

What is the most general realization of the time transla-
tion semigroup?

If we define a generalized state |®,7,) labeled by a pos-
itive parameter 7,>0, linearly dependent on |®), and

with the same norm (®|® ) =1, with the restriction that

|®, 7o) vanishes for negative 7o, then the operations
H1)|®,70) =D, 7+7,) ,
- - (65)
(B, 70| J(1)=(D, 7+ 7|

furnish an isometric realization of the time translation
semigroup. What is the structure of this realization?

For vectors in the space #' extending # where the en-
ergies are real but unbounded, the states

1,700 = [ * dra(A)e” "T|A) (66)

satisfy the requirements, provided a(A) is analytic in the
upper half plane. By a theorem of Titchmarsh, any such
function has a Fourier transform that vanishes for nega-
tive values of the argument. Then,

la(A)|*=a(A)a*(A*)

is also the boundary value of an analytic function, analyt-
ic in the upper half plane. Correspondingly, the survival
amplitude

(Blpy=a(t)=[" a(X)a*(A*)e ~™MdA
vanishes for negative values of ¢. For |¢,7,) the survival

amplitude has a larger support:

A4, ()=0, t>—1,. (67)

The state |¥,7,) may be thought of as having been
born at t=—r, and developed by the total Hamiltonian
from then on. The linear correspondence

J(7)|g, 1) =¥, 74+7,) (68)

then furnishes an isometric realization of the semigroup
of forward time translations. Any one of these state
|W,7,) can also be time translated backward until
t=—71,. We recognize the composition law,

Hr)H )W, 70) =¥, 7o+ 7,+7,)
=4(TZ+T1)I\IJ’TO> . (69)

The operations are only realized by isometries since in
general the inverses do not exist.

Given the state |¥_ ), which admits the negative time
translation semigroup by isometries, we have the family

W_,70) =F(ro)lW_), m4<0, (70)
which satisfies
4(T1)|\I’_,To>=|\l’_,’ro+7'l), 7'1<0. (71)

The state |¥_,7,) would die at time t = —7,. This gives
us the opportunity to construct the analogue of the classi-
cal decaying ensemble. For this purpose, we construct

)= [° b(n)I¥_,r)dz . (72)

The time evolution of this state is
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W)= [ b(|¥_,r+1)dz
o (73)
=f_ b(r—t)|¥_,7)dz .

So the time evolution on such pseudostates is equivalent
to the shift

b(r)—=b(r—1t) . (74)
A strictly exponential decay could be produced by choos-
ing

b(1)=exp , (75)

z

so that the amplitude is self-similar and the state de-
creases by exp[ —(y /2)t]. Any other line shape can also
be excited by choosing the amplitude factor b (7).

Such a choice may appear artificial. But this is precise-
ly the skeleton of the Gamow states with strictly ex-
ponential decay.

plt)=p (t)+p_(1),

patv=["ar[" hrbh(r-b

This decomposition has the property

pJ_r(t):Ti(l)pi(O), +t>0 ,
(79)
=0, *r<0,
with T (¢) furnishing a semigroup realization,
T ()T (t,))=T (£, +t,), *t,,£1,20. (80)

Note that while p is a physical density matrix, p, and p _

are quasiphysical; they are defined as densities in the

space 7' extending 7 to unphysical negative energies.
With the density operator, the bilinear quantity ob-

— r/2 +1
iut = )\'
¢ [fx/zzm' (
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V. DECAYING PSEUDODENSITY OPERATORS

In the previous sections we studied the time evolution
of a quantum system, which is described by pure states
represented by state vectors. Now we take up the corre-
sponding problems for a mixed state described by density
operators. In the Dirac notation, if we choose

|
T i b £t
= A._
=1 f_mp(x,p)lmz»« andu (76)
the time evolution is
© A2 .
0= [0 [ ptian s L)
p(t) fo }\fwx/zp( n A 5 A 5 le du
1 )|
J e [levid Pl ’”!k 2 I\ 2 u
(77
We could rewrite this in the form
(78)
;I d ’ )
”)u— T 0K (dn
f
p(t):e‘iﬂtp(o)ei}lt ,
and the trace is invariant under cyclic permutations,
P(—t)=tr[p(—t)p(0)]=P(2) . (82)

Hence the survival probability is symmetric in time.

Instead of working in the space of linear operators in
H, we could analytically continue to the space of linear
operators in § and §*. Then,

tained by taking the trace of the product p(0)p(?) is the _ >l Lz » «k— Z | —imgy Lga
survival probability po) fo f‘x/zp(k’Z) A 2 2 (¢ dz
= — 2
P(t)=tr[p(0)p(1)]=| A (2)|* . (81) =p . (D+p_(1), 83)
This is the scalar product in the vector space of linear
operators on #f. Since with the Hilbert transforms,
J
putr=2E [ar [ | [ p(hz)————dz’ k+5>><<k——z— e indz | (84)
* 2mi Yo c | Y —an2 z—z'%in 2 2
[
The pseudo density matrices p,(f) realize the time # by
translation semigroups,
HIAN=AL), G2)=(z—H)"',
T, (t)p(0), £t=0 ‘ B (86)
P+(D=10 +;<0 (85) Hylo)=o0lo), Gyz)=(z—H,) .
We now return to scattering systems with the Hamil- Then,

tonian H=H,+ V. As before we denote the (possibly
ideal) eigenvectors and Green’s functions of H and H in

G(z)=(z—H) '=[1—-Gy(2)V] 'Gy(2) , (87)
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and the (un-normalized) solutions |1 )) satisfy
IAN=|A)+Go(MVIAN =|L)+Go(M)T|A)
={1+Gy(A+ie)T}IA) , (88)
with
(ol TA)=(olVIA)
=(w|VIL) +{o|VGy(A+ie)T|L) .  (89)
The Moller matrix is

0= [drlA) KAl , (90)

and satisfies

2015

{lz; Dz} in the completeness sum. When composite
particle continua are included, we may have to renormal-
ize the states by writing

|z’ W=N(z')[1+VGy(z'+in)T1lz') , (93)

with N(z') being suitable normalization factors.

When we wish to study mixed states it is convenient
and necessary to extend the study to all linear operators
in # or the dual pairs &, &, rather than just the convex
set of Hermitian non-negative density operators. Given
the set of ideal eigenvectors {|A))} and {|A)}, complete
sets in the linear space # of linear operators on # are
given by {[A){ul} and {|A){u|}. The non-negative
Hermitian scalar product in # is given by

HyQ=0H ,
ala= [aan €l on ALY = Cula D Ky
(94)
00'= [daa) Al . (A Caal, IA) (D= el A (A
So to the extent that {|A))} and {|A)} are complete sets,  The Liouville equations of motion
0'Q and QO furnish resolutions of the identity and
therefore Q is not only isometric but unitary. ip=[H,p]=Lp 95)
corvlril::jlne ?;::p’::;r{izagg‘fii?';:i?giagiﬂ g)ot :;’:: Can  oeneralize to these operators by linearity:
Glz+im)=(z—H+in)"! A QD =LIAN Kpl)
=[1-Gy(z+in)V] 'Gylz+in) , (92)  We write
zZN=1z)+Gyz+in)V|zN=[1+Gy(z+in)T]lz) L=Ly+L,
and L=[H,-], Lo=[Hy'], Ly=[V,]. 0
Q=fdz!z>«zl . Then,
The possible discrete states satisfy Lolo)o'|=(0—0')|w) o],
[1=Golz ¥ }lzy =0, LINCRT=R=A K] 7
and may therefore be included by writing the terms  Then,
J
(lo) (@', LolAN LA N=tr(L AN UL |0 ) o' )=(0'— o) o' AN LN |w) ,
(loX @' [,L Ly AN KL == AN UL V]0) (' | VIAN €N |0) =T(', M UL |0) — T*(0, A" )’ |A)) . (98)
But
(a)'|k))=(a)’l)»)+fT(u,k)———L)\_i_HG(w’]l), 99)
so that
(@' =A@ AN =—T(o',1), (AM—0){N|ow)=—T*w,A").
Hence
tr( Lo AN AN o) (o' )=(0' —A+1" —0+A—1" X&' A ) (A |w)
=(A=A" ' AN AN |0) = T(0'M) (N 0) —T*(0r )’ |1)) . (100)

Thus we recover the result

tr({ Lo+ Ly} AN KX [0) (o' N=(A—A" )’ AN LN |0)
=tr(LIAN LA o) '],

(101)
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as it should be. In particular, if we put A'=A it follows
that

(Lol AN KAL) o' )= —(Ly AN KAL) a'])

for all values of ®, ®' and, therefore, in the limit o' —> .
However, if we simply computed Lyl ){®’| in the limit
o' — o, we get zero. So it appears that

tr({Lo+Ly}IAN UV ) o) =tr(Ly AN LN |w) o) .
So in the limit A’ — A we get this quantity to be [16]
tr(Ly AN LA o) ()= (| VIA ) {Alo)
—(oANLAV]w) ,
which is the matrix element of the “collision operator”:

(IANUALLy o) (0])=0(A0) . (103)

(102)

This inconsistency comes in because of the singular na-
ture of the matrix elements of £, L,, L, between the
projections |A)){(A| and |w){w|. The computations go
almost verbatim when one goes from the space
H ~FH®F to the space F~ 98 G.

VI. INVARIANTS OF MOTION

The scattering system with Hamiltonian H=H,+V
has one constant of motion in H itself (assumed time in-
dependent). We saw that

H=0'H,Q .

By construction, H and H, are isospectral. So H, is not
necessarily the free Hamiltonian but a suitable compar-
ison Hamiltonian with the same spectrum as H. The
discrete states |A,)) or |z,)) are to be included in the
spectrum of H,. We shall assume that this has already
been done. If {H,} are a complete set of constants of
motion of the Hamiltonian H, then

Il+fdu' )| T

H
z'—p'+ie [

«z'|0H, 0z ))=<<‘z”

VII. ANALYTIC (CONTINUED) SCATTERING
AMPLITUDE

For a system with a Hamiltonian H =H,+ V in a Hil-
bert space H, we constructed a set of ideal eigenstates
[A)) of H corresponding to ideal eigenstates |A) of H,.
In the analytic continuation, we have ideal right eigen-
states |z)) of H with eigenvalues z and corresponding
ideal right eigenstates |z) of H, in §. There are also left
ideal eigenvectors ((Z| with the same eigenvalues for H
and (Z| for H, in the dual space §. The relationship of
|z)) with |z ) is given by

z)=[14+Gy(2)T(2)]|z) ,
T(z2)=V+VGy(2)T(z) .

11+f duT|u){pl }
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(Q'H, Q) (104)

are a complete set of constants of motion of the Hamil-
tonian H. If H, describes a system of N free particles
with canonical variables {g;,p;1<j<N}, there are
2N —1 constants of motion that can be expressed in
terms of the overcomplete set {p;,q;px —qip;}. The cor-
responding overcomplete set of constants of motion for H
are

(Q'p;0,0%q;pc —qip;)0} . (105)
In particular,
2p}
H=0 |-~ o (106)

While the matrix elements of Q are singular, this in no
way makes the operators singular. [After all, the unit
operator has the singular matrix element 8(w—®').] Out
of these 2N — 1 constants of motion, N are mutually com-
muting. When the spectrum of H is degenerate the de-
generacy index labeling the specific ideal eigenstates is a
function of these N commuting constants.

For the analytically continued case in § we define
analogously a comparison Hamiltonian H|, isospectral
with H by adjoining all the discrete states (and discarding
any states of the free Hamiltonian that disappear in the
presence of the interaction V). Then the Moller matrix €
and its adjoint Q satisfy

QQ=1, H=QH,Q, (107)
and the constants of motion are given by [22]
(QH,Q} . (108)

More explicitly,

z>> . (109)

I
z—pu—ie

[

The choice of the Green’s function G,(z) and hence |z ))
is left arbitrary. If we define

Go(2)=(z—Hy+in) " '=G.(2),

then the corresponding state |z)) is an “in” state ap-
propriate for the scattering with “diverging” scattering
waves as t — + oo but none as t— — o0. The amplitude
of the diverging waves is the scattering amplitude

F(z)=1lim (z'|(z—H)(|z ) —[2))=(z|T(2)|z) .

Since T satisfies the integral equation
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T(2)=V+VGy. (2)T(2)

we can solve for T in the form

T(2)=[1-VGy:+(2]"'V ,

2017

with the formal perturbation series realization

T(2)=V 3 (G, (V] . (110
0

We immediately get the ‘“unitarity relation on the energy
shell”:

lim {TYz") = T(2)} =[1-VG+(2)] " {[1=VG 1 )V —=V[1=G | (W] [1-G]. (z)]"

z—2'

=lim [1=VG ()] Y VG, ()W —VG + (2)V}[1-G . (2]

zZ—Z

= lim T(2)[G}.(z')—G . (2)]T'(z")

Z—2

=27i8(z—2")T(z)T'(z’) .

(111D

We could calculate the scattering amplitude T from the .S matrix, which is the product of the “in” state and the (dual of

the) “out” state. We obtain
S(z,2')=(2'|[1+Gy(2)T(2)]|z) ,

with
S(z,2')=8(z—z"){1+27mi{z|T(2)|z)} .

(112)

(113)

By the unitarity of T on the energy shell we verify immediately that S is unitary.

Considered as an analytic function of z, the scattering
amplitude T'(z) depends not only on the dynamical factor
[1— VG0+(z)]"1, but also on V. While the poles of

[1“VG0+(Z)]_1 depend on V they depend also on the

“strength” of the potential: when V is replaced by gV,
where g is a coupling constant, the poles move when g
changes. On the other hand, the singularities coming
from the factor V are “‘geometrical” in that they do not
depend on the magnitude or even the sign of g. There are
no new states in the spectrum of H (in # or §) since that
is governed entirely by the dynamical factor
[1—GO+(z)V]"1. Therefore the singularities of the

scattering amplitude do not always correspond to the
spectrum, but may be “redundant.” So care must be tak-
en in identifying the singularities of the scattering ampli-
tude with the spectrum of physical states, though in a
field theory the potential has a “‘geometry” that depends
on the spectrum in a crossed channel.

Not only are there redundant singularities but there is
also the possibility of the absence of a singularity for cer-
tain plots (or sets of points) of the physical spectrum.
This occurs when there are discrete states where the
(analytically continued) potential has a zero. This gives
rise to the possibility of (real or complex energy) states
buried in the (real or complex) continuum [2,6].

Examples of these phenomena are provided by the
solvable models described above. For the Lee model,

r=L1Ef @)

a(z+in) (14

If T(z) has a pole at z=z, without a(z) vanishing at this

point, z, is a redundant pole. If the numerator has a
branch point, that too would be a redundant singularity.
On the other hand, if a(z) had a zero at z=z, and
f*(z})f(z;)=0, then the scattering amplitude has no
pole at z,, though there is a discrete state at z, in $.

When H and H, are not isospectral the theory is some-
what more complicated. We see that the set of singulari-
ties of the total Green’s function consists of all the singu-
larities of [1—Gy(z)¥]~ !, and some of the zeros of
[1—Gy(z)V]"! may cancel the singularities of Gg(z).
For z at one of these values where 1—G(z)V=0 we do
not have an ideal eigenstate of H, so we have to consider
a comparison Hamiltonian H_, which has these values of
z in its spectrum. We denote the corresponding ideal
eigenstates of H, by |z). Then we may write

ZN=[1-Gy(2)V] z)
=|z)+Gy(2)V|z)) .

There is now no guarantee that this state is normalized.
It would definitely not be so if z corresponds to a point ei-
genvalue (with a normalizable eigenstate) not contained
in H, but in H,. In addition, if such “composite parti-
cles” are in any continuum state we may have to renor-

malize the state: we write
ZNW=ZV%2){|z)+Gy(z)V|z )}
=ZV ) [1—-Gy(2)V] Y z) , (115)

where the wave-function normalization constant Z(z) is
to be computed so that |z)) may be normalized. For a
nondegenerate discrete state,
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i ~1
Z(z)= 'i[l_GO(Z)V] (116)

dz

All the above calculations are carried out for the space
# with z assuming only real values. But all of them can
be extended to the generalized dual pairs G, § by analytic
continuation of the ket and bra vectors in #. The in and
out states correspond to the use of

Gy, (2)=(z—Hy+in) !

with 7 as before, being orthogonal to the contour along
which the spectrum of Hj is defined. Dense sets of kets
are continued to provide dense sets in §; dense set of bras
are continued to produce dense sets in the dual space G.
The action of forming the adjoints of Green’s functions is
to seek

Q(z)=(G(z*)* . (117)

The same rule applies to other operators also. Clearly,

G, (2)=G,-(2) . (118)

0
With these basic rules the entire formalism can be applied
to the generalized space 9, G rather than merely to 7f.

Isospectrality does not necessarily remain valid after
analytic continuation. New states may be adjoined or
deleted. Hence the comparison Hamiltonian H, may de-
pend on the particular analytic continuation chosen (and
the specific Hamiltonian).

In both # and in § when composite particles are
formed not only do we have to adjoin point eigenvalues
to the spectrum but also involve such composite particles
in the many particle scattering sectors also. In any
theory that satisfies the cluster decomposition property,
which is to say that when groups of particles are separat-
ed from other groups by sufficiently large distances the
interactions fall off faster than any inverse power, then
the spectrum has ‘“‘subadditivity.” This means that if one
group of particles has z; as its total energy and another
group has z, as its total energy, then the grand set
comprising both groups of particles have z=z,+z, in
their spectrum. (However not all values of z need be of
this form. New bound states or new continua may form,;
hence subadditivity.) Hence composite particles must
occur in scattering states; these states are not in the spec-
trum of H,. We must therefore have them also added to
form H._.

In a state involving one composite particle and other
noncomposite (‘“elementary”) particles the wave-function
renormalization is the same as the normalization con-
stant {3/3z[1—Gy(2)V']} ~!/? because when the compos-
ite particle is “far from the other particles” its own
wave-function renormalization fixes the renormalization
for the entire state.

The magnitude of the renormalization constant in
more general cases is not known. In particular, when we
have rearrangement collisions or multiple composite par-
ticles the magnitude of Z is unknown.

_ VIIL. CONTINUUM EIGENSTATES,
MOLLER OPERATORS, RENORMALIZATION

Consider the quantum system in # or in § with the
Hamiltonian

H=H,+V,

where H|, is the free Hamiltonian (say, of free particles)
for which the states and the spectrum are known. In #
the spectrum of Hy is R T ={A|0<A< «}. H may have
other eigenvalues, discrete or continuous. Let us formal-
ly denote by |z ) the ideal eigenvector of H, with the con-
tinuum eigenvalue z (real in #, complex in §). Let us
denote the ideal eigenstate of H by |z )). Then.

Hylz)=zlz) ,
(Hy+V)zD=H|z)=z|z)) .

Choosing |z),|z)) to have the same continuum normali-
zation, the Moller operator () defined by

Qlz)=1z)
is isometric:
Q'Q=1 in #,
QQ=1 in g .
The state |z )) satisfies the integral equation
Qlz)=zN=1z)+Gy(2)VI|z ),

where G(z) is a Green’s function for the free Hamiltoni-
an

(z—Hy)Gylz)=1,

with singularities at the spectrum of H,. Since
N=Gy2)V1lzN=lz) ,
ZN=[1—Gy2)V] 'z) .

Now we define () by requiring
Q) =[1-Gy(2V] Y z)=1z)) .

Note that while G(z) depends explicitly on z, the pre-
Moller operator 2, does not. The “‘scattered wave” is

2N —1z2)=Go(2W|z N =Go(2)V[1—=Gy(2)V] 'z},

but to make it physically appropriate we have to use the
Sommerfeld outgoing wave condition:

Go(2) =G+ (z2)=(z—Hy+ie)™!, e—0+ .

This scattered wave corresponds to a source amplitude
T(z) given by

T(2)|z)=(z—Hy)lz)—1z)),
which is seen to be
T(z)=V[1—Gyz)V] ' (119)

These results are valid, but do not deal with all states
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since [1—G((z)V'] can vanish at values not in the spec-
trum of H,. We shall return to this question later in this
section.

These results can be obtained from a formal perturba-
tion theory [13]. The solution |z)) can be expressed in
the form of a power series:

lZ W ={1+Go(2)V+Gy(2)VGo(2)V+ - - - }|2)
S [Go2)V]" Hz)
0
Q2= {3 GV Iz ,
0

T(2)=V+VG,y(2)T(z)= Vli [Gol2)V]"
0

S(z)=14+27iT(z) .

We observe

H §, [Go2)V]"z)={z—(z—Hy)+ V}i [Go(2)V]"|z)
0 0
=24V =G D]} [Go(2)V]|2)
0

=z i [Go(2)V]"z) .
0

Since |z));=3¢[Go(2)V]1"|z) is an (ideal) eigenstate of
H corresponding to |z ) for H,, it follows that
Qlz)=

z),= (120)

2 [Go(2)V]" llz)

We have not yet guaranteed that |z)), is normalized nor

even if it is nonzero. In fact, at precisely the zeros of
[1-Gy(2)V] =3 [Go(2)V]"

0

the state |z )), vanishes. In the generic case we must nor-

malize |z )), to obtain the proper state |z)). For this pur-

pose we compute the non-negative matrix Z=Q Q.,
Then

Q=z"'2q,
satisfies
aaf=z-1g,0f=1. (121)

This construction is possible only when Z is nonsingular.
When Z is singular we define Z ~1/2 as the generalized in-
verse computed in the non-null subspace of Z; if the pro-
jection to the null space is 7, then

The Moller matrix so defined is isometric but not unitary:
o'a=1, aaot=1-7,,
0,0llz)=zlz)= 3 [Vé*@I"G)V]"z),

m,n =0
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which vanishes only where

2 [Go(zl )V]n=[1_G0(Zl )V]_I
1]

has a zero. When such zeros obtain there is a change in
the spectrum of H; these values of z, are no longer in the
spectrum of H. In addition, wherever [1—G,(z)V]™!
diverges, that is, wherever

Gol5)V=1, (123)
for some value of z=¢ there are new states in H that
were not in H .

The new states |£)) should be adjoined to the states
|z)) to form a complete set of states, and there are no
states |z, )). This spectrum of H is to be associated with
the comparison Hamiltonian H,. We can define a unitary
Moller matrix on these states:

aolo=00'=1.

As stated in the preceding section these considerations
apply equally to the perturbation theory in §. We need
to define

Golz)=(z—H,+in) ™!

and replace adjoints by the duals and obtain

QI|Z>= i [Go(Z)V]n|z> ’

n=0
z=Q,9,, (124)
Q,= > [(VGy(2)]™,
m=0
and
Q=Z"1/ZQ, .

If we start with the free Hamiltonian the spectrum of H
may be different [23]. The places where G(z,) takes the
value unity are to be deleted from the spectrum of H|
and the places where

3 GOV
0

diverges are to be added to the spectrum [23]. So we get
a new comparison Hamiltonian H, which is free and iso-
spectral with H.

H,(|z)=z|z),
H, |§)=¢lg) .

The “augmented Moller operator” intertwines H and H,
and is unitary:

{z}#{z1},
(125)

0H.,=HQ, ao'=a'a=1. (126)
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IX. PERTURBATION THEORY
IN GENERALIZED SPACES:
SOLVABLE EXAMPLES

Let us now apply this formalism to certain concrete ex-
amples. The one-channel Yamaguchi separable potential
model [24] (for S waves) has a state space of functions
f(z) which are L,(0, ) with the (norm)? given by

f11P= [ s (xdx

We have removed inessential kinematic factors to simpli-
fy computations and focus on the essential structure; note
that the integration variable is the free particle relative
energy rather than the relative momentum. An ideal
tasis is given by the continuum normalized function real-
ization,

(127)

z)=8(z—x),

so that
=] ")z

is a normalizable state. We choose z or x to be the energy
variable so that

Hylz)=z[z) .
Take the separable potential interaction to get
(Hy+WIf)=HIf)=Hylf)x<flg)|f). We may
represent these Hamiltonians formally as matrices:
H=H,+V=z56(z—z")tg(z)g(z') . (128)
Then,
Gy(MV==%(A—z+in) 'g(z)g(z’),

g (222 (gt i1 BZRED
[Go(MWV ] =g(z)g[z'(A—z+in)] k—z”+indz
Then,

3 (G =8(z—z)t{(A—z+in) 'g(z)g(z")
0
fg(z )g(z
A z"+t
' g(z)g(z")
=8(z—z')t
Mz G et |
(129)
where
g V)g(zlf)dzll
=14 | &< /62 0L
Ba+im=1x [ s Fin (130)

is a real analytic function with a cut along the spectrum
of H, (the real line from 0 to « for #, a complex con-

tour from O to o« for §). Since B(z) is finite for all z, it
follows that
Q,12)=3 [Go2)V1"]z)
0

cannot vanish for any z and hence the entire spectrum of

E. C. G. SUDARSHAN 50

H, is included in the spectrum of H. However if
36 [Go(z)V]" can become equal to unity so that B(z) is
zero for any z in the cut plane there will be one or more
additional states |£) in H, and then H, will be different
from H,. A more detailed study of 3(z) shows that it can
vanish (at most) only at one real point for the negative
sign in (9.2), that is, for an attractive potential.
The ideal eigenstates |z )) are given by

g(z')g(z)

NN =8(z'—z)+
(2'|z)=8(z"—z)% (z—z'+in)B(z)

(131)

and are continuum normalized:
{z'|zN=8(z"—2z)

However, when a bound state |£) arises as the isolated
zero of B(z) the un-normalized solution is

g(z’")
(E—2')

and the state gets normalized by Z ~1/2

(z'|eEN, =

with

= ’ Id ’
=f—-——g(z(§)‘i(j,))2z =) . (132)
Hence,
(zlgn=(p1)) &) (133)
(—z
The augmented Moller matrix elements are
, . (z")g(z)
(z'|Qz)=8(z'—z)+—E8 282
_ ’+'
(~z( )z inlp(z) (134)
—rp -128\2
clalz) =g E

This augmented matrix can be verified to be unitary. One
can get modified models by replacing V by

N
(Z'|[V]z)=3 +g,(z")g,(2) .

r=1

Then there is the possibility of many discrete points in
the spectrum of H. But all points in the spectrum of H
are still in H.

For a simple example of the deletion from the spec-
trum of H, to obtain the spectrum of H, we take the Lee
model [9]. In this case the vector space is the space of a
pair of complex number and a function in the form

(fo,f(2))

with the (norm)? given by
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FIP=£3fo+ fowf*(z*)f(z)dz. (135 my, g*(z*) ]
H= - (137)
The Hamiltonian H, has a discrete eigenvalue m, and a q(z) z8(z—z')
continuous spectrum from 0 to «. The total Hamiltoni- Then,
an is defined by
*( ‘l)
(Hf )o=myfot fg*(z'”)f(z’)dz' s 0 iTZm__
(136) Gy(MV= °
(Hf Nz)=g(z)fo+zf(2) . 0 g(z) 0 ’
The matrix form of the Hamiltonian is A—z+tin
J
and
— -1 . 8%(z*")g(z")
_|mmo) [z S 0
[Go( MV ]*= . 2(2)g*(z'*)
(A—z+in)A—my)
Hence,
(k—m.o) 0
® oV = a(A+in)
"§°[ ’ 0 8(z'—z)+ g*(z*)g(z)
(A—z+in)a(A+in)
0 gt(zl*)
S 2n+1— a(A+in)
ngo[Go(}\.)V] - g(z)(k—mo) ,
(A—z+in)alA+in)
with
— _r8*z*gz") .,
a(f)=6—m, f————————}\_~§ dz" .
Hence,
(K—mo) gt(z/ t)
ol . alA+in) alA+in)
2 [GMVI=1 g(z)a—my) 5o g &) (138)
—z+ima+in T =z +inaA+in

This operator becomes singular for A=m and hence this point in the spectrum of H,, is absent in the spectrum of H
and hence of H,.

As to augmenting the spectrum we look for poles of 357°[Gy(A)V]". In this model there is at most one real location
for a(A) to vanish in #£. If there is a zero,

a(M)=0, (139)

then this point {=M should be added to the spectrum so that H, has =M and 0 <{ < « for the spectrum in #.
In § there is always a zero for real M or complex ¢ where a(£)=0.
In all these cases the continuum solutions

zN=Q,z)= [Go(2)V]"z)
0
are normalized. But for the discrete solution we need to renormalize the ; matrix elements by the factor Z ~!/2, with

Z=a'({). (140)

In both the Yamaguchi and Lee models the continuum remains unchanged. A model in which the continuous spec-
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trum also shifts is provided by the Cascade model [1
(x,¢(w),¥(w,v)) with (norm)? given by
*x+ [¢*0* (ot [ [v*(0* v W e,vdod

The matrix realization of the Hamiltonian is

E. C. G. SUDARSHAN

2]. In this the state vectors may be realized by a triplet

V.

my [*o*) 0
H= |f(o) (m+0)§(e0 —w) g*(v*)8(w—w') (141)
0 gv)blo—aw") (0+v)8(0' —w)d(v' —v)
Then,
0 (z—my) () 0
Go(z)VV=|(z—m,—)" flw 0 (z—my—0) 80—a")g*(v*) |, (142)
0 (z—w—v) 'g)dlw—0') 0
and hence,
(s gy [ L2 ) . F o g )
z—x+in (z—my)z—m,— ")
0 [flo)f*(0*') So—w') fg*(y )g(y)dy 0
(z—my)z—m;—w) (z—m,—w) (z—ow—y)
[flo')g(v) 0 Slo—aw')gv)g*(v*')
(z—o'—v) N z—m;—0)"! (z—o—v)(z—m,—w)
(143)
[
If the wave function has the form -
o= [ £
a(z) Z—w—y
¥,= | blz,0) |,
c(z,0,v) Flo)
)
isfvi == | f*0*)b(z,0')d
satisfying p— f f o')do
2)Vy. =4y, ,
=y(z—w)b(z,0) . (145)

then b(z,w) satisfies

’

o*)b(z,0"Vdw

(z—mgy) Nz—m,—0)” ff

gT0 ey _p(,

If y(z) has a zero at z =y, then the generic solution is
=6(z —p——w)
f @ x)b(
—_— x)
— z—mo) ff =

b(z,w)

(146)

This integral equation can be solved by standard means:

>

| The effect of the interaction is to shift the continuum
from m, <w< o to u <w< « and possibly to introduce
the zero of a(z) as a discrete state.

In this case, finding the spectrum of 3 7_([Gy(A)V]"

+(z——m]—a))'1b(z,a>)f gy ),
z—w—y
(144) e
or
]
ff*(x")b(z,x)dx=f*(z—,u) ff f‘y dy [ f*(x*)b(z,x )dx
y(z—
_ frz*—p* (z—-mo) _(z—mo)f"'(z*—u*)
*x( % a(z)
—m _ff (z*)f(y)dy
_.,},)
and hence,
blz,0)=8(z ~p—a)+ L@ _LHZ"—p") 4
Y(z—w) al(z)

and the ideal eigenfunctions has been done in an earlier
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paper [12]. The spectrum consists of an infinitely degen-
erate continuum O<A < oo, possibly a nondegenerate
continuum m <A<« (m <0), and possibly a discrete
state at A=M if

alz)=z—m ff (0*)f (w)de
y(z—w)
*(v*)g(v)dv (148)
y(z)=z—m f_g____g__
have zeros,
a(M)=0, M<O0,
(149)

y(m)=0, m<0.

Thus the degenerate continuum m; <A< « is eliminat-
ed, and A=m,, is also eliminated from the spectrum of
H,. If a(z) has a discrete zero there is a discrete eigen-
value A=M augmenting the spectrum. If f(z) has a
discrete zero there is nondegenerate continuum from
m<A<oo.

Even more interesting is the wave-function renormal-
izations for the states. The infinitely degenerate continu-
um 0<A< o needs no renormalization. The discrete
state A=M has the wave-function renormalization Z,; '/
with

Zy=a'(M) . (150)

The continuum m <A < o has the wave-function renor-
malization Z ~!/? with

Z=a'(m) . (151)

This need for renormalization of the continuum channel
shows the limits of validity of traditional scattering
theory, where the continuum channels have no renormal-
ization by invoking the adiabatic hypothesis. The “per-
sistent interaction” creating a composite particle of mass
m does not obey adiabatic decoupling and hence the
failure of the usual asymptotic condition obtains.

When the “bare mass” parameters m,, m are suitably
increased the eigenvalues A=m and A=M disappear; and
in #f there is no discrete state or nondegenerate continu-
um. But by analytic continuation the bound states are
realized at complex values of m, M. In this case the non-
degenerate continuum from m to o is along a complex
contour, and has the wave-function renormalization al-
ready derived. The results can be obtained from the for-
mal perturbation series in the analytically continued
theory. Richer solvable models with more than one shift-
ed continuum and the possibility of rearrangement col-
lisions are currently under study with a view to seeing ex-
plicitly the realization of the ideas discussed in this sec-
tion.

X. EVOLUTION
OF THE DENSITY OPERATORS

The discussion in the previous sections have been in
terms of state vectors and linear operators acting on the
vectors. This corresponds to the special case of pure
states, and the expectation value of a dynamical variable
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is sesquilinear in the state. A framework including mixed
states can be obtained by using density operators p. For
a dynamical variable 4 and a trace class density operator
p, the expectation value is

(4),=tr(4p) .

More generally, we can consider the algebra of dynamical
variables and non-negative normalized linear functionals
L on them:

A—L(A),
1—-L(1)=1,
AYAL(AT4)>0.

(152)

Being an algebra, A is a vector space; the linear function-
als .L on A constitute elements of the dual space, with
the state functionals, by virtue of their being non-
negative and normalized, constitute a convex set. The
most general dynamical evolution on A implemented by
linear automorphisms is projectively equivalent to a
Hamiltonian evolution, and may be alternately realized
by unitary transformations on the density operator.

The action of the Hamiltonian time development on
the density operator is according to

ip=[H,p]=Lyp ,

where L is a superoperator acting on the vector space of
density operators and their span. The integrated form of
the equation of motion is

p(t)=exp(—itL z)p(0) . (153)

If we could find the spectrum of L, then we could seek
a resolution of the identity and an integral representation
of the time development. If

LHR}\=}"R}» N
and A% is dual to R, so that

(AR, )=tr( A*R;)=8} , (154)

and

JdrR, 4*=1, (155)

then
p()= [tr(A¥p)R e~ dp .

Note that the integrand is a multiple of R;, which need
not be a density operator, and for A0 it will have trace
zero. It is therefore important to determine the spectrum
of L. When we realize the density operator p as being
sesquilinear in the state vectors, the spectrum of L is
the difference between points in the spectrum of H:

Hu = )\.1 - }\,2 .
By writing

A=v+ L;-, )»f—'v-%'—

we see the L spectrum as being infinitely degenerate
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with degeneracy label v and
vzZu> —2v.

When we consider analytic continuation, we may keep v
fixed and continue in u, or make both v and u complex.

If {¢,} is the spectral family of an operator, say the
Hamiltonian H and {¢?} the dual family, then a basis for
the space of linear functionals .£ is given by the two-
index family {¢,¢%}. Similarly, if {¢,] is the spectral
family of H, and {¢?} the dual family, another two-index
family is {$,47].

It is convenient to employ the Dirac notation for the
state vectors and density operators:

$.—lz), ¥ —(7|
v, —z2), §7—(z'] .
Then,
V2N K2, ¢,87 —12)(2| .

(156)

We compute
W =HI )7~ 7 H
=Lylz)Z'|=(Ly +Ly)z)Z'] .
It is also possible to deduce
i%lz»«‘z"l:[;ﬁz W2 | =z =2z Wz .

In particular, since
LylzN{(z|=0,

the quantities |z )) {(Z| are constants of motion.
The bilinear in the transition amplitude (generalized
transition probability) is given by

tr(z N2 | LT )=z —2z)e(|z N L2 £ (&)
=(z—z)(Z'|E) 1z . (157)
Since
2N =(1=G(2)V)z),
the transition rate can be equally well written:

(z—z'NZ'[[1=VG . (2)]) ENEI[1= G+ (2)] Mz) .

In particular, this vanishes for z=z’.
But if we attempt to calculate

miz>><<zm,c,,|§><§|>=%|<;lz>>12, (158)

we encounter an undefined quantity. On the one hand,
since L ;; annihilates |z )) {(Z| this is zero. But

Ly=Ly +Ly
and Ly annihilates |¢ Y{(&| it appears that the time
derivative is

KEIViz) 2,

which is nonzero. This ambiguity is resolved when we
understand that

tr([z Y Kz|[EI(EN=1(Elz N I?

is undefined since it contains the square of the § function
in

(GlzN=8(,—2)+((G + (2)T(2)lz) .

Thus we should not attempt to calculate the double diag-
onal matrix element.

A “diagonal” initial state |£){£| will lead to a correlat-
ed final state, which is also pure and must therefore con-
tain correlations |z )){(z’| with zFz'. If these are
neglected we would, like Boltzmann’s “proof” of the H
theorem, arrive at a fictitious time asymmetry, which
would appear to cause time evolutions that take us from a
pure state to a mixed state. Even if the initial state is a
weighted sum f W(E)EY(EIdE, there are correlations

[z {(Z’| in the final state for z#z’, which must not be
neglected unless there are external effects that wipe out
such correlations.

A more careful calculation involving due attention to
limits is the following:

H(E—ENKZIEE Iz N +i k2 [VIE(E ]z )
—ilz' [EEVIz N

=tr(lz W2 (L, +LIEHED . (159)

We know that

=, = d =
<§|z>)——<§|z>+fT(v,z);—:vai;(§|z) ,

and that
(&—zCzN=—T(,z),
(' =O(Z'|E)=~T(¢,z2") .
Hence,
i(& =&z
=—(T(&,2)Z' &)+ T2 {1z M ,
and
i€ |VIEXE |z N =iT (&2 )(Ez ),
—il2'|EEVIZN=—iT(¢,2)(z'[§) .
Hence,
(2 N2 (L, + LT
=(z—ztr([z N2’ 1§D .

which does not vanish for §'=¢ for z'#z. The right-
hand side is exactly

tr{(Lylz N (2’| )|§>(§'H=i%(127t Wzt 1EY (D

_~d e ' |
—z—dt(<§ lz,e ) (z",¢t]1E)) .
(160)
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It would therefore be vanishing for z'=z, and
f |z,¢ W{Z,t|Y(z)dz are stationary density operators of

the system. There are arbitrarily many stationary density
operators, one for each function Y(z).

CONCLUDING REMARKS

In this paper we have shown that the natural formal-
ism for quantum mechanics is in terms of families of vec-
tor spaces of analytic functions and their duals. The vari-
ous choices of the generalized spaces § give the same
physical quantities in terms of different contour integrals.
One particular use is to study resonances in scattering
systems. The method developed in this paper can also
compute the scattering of a resonance off a particle.
Scattering theory is reformulated using a comparison
Hamiltonian along with the total Hamiltonian. This
comparison Hamiltonian takes account of the change of
the spectrum due to interaction and is an essential ele-
ment of setting up a proper scattering theory. In addi-
tion to the change in the spectrum, corresponding to
mass renormalization in quantum-field theory there is
also a possible wave-function normalization. Examples of
both are worked out in models of interacting field
theories. A perturbation theory for interacting systems
with both continuous and discrete spectra is formulated.
It is shown how the perturbation series can be reformu-
lated to give closed-form expressions for the Moller ma-
trix.

It is important in this context to note that the con-
structive definition of the Moller matrix shows how to get
the modified spectrum and the generalized Moller matrix.
The failure of the usual adiabatic hypothesis and the
simple-minded asymptotic condition is seen even in these
simple models. When the correct asymptotic condition is
invoked and the properly generalized Moller matrix is
evaluated, the latter is not only isometric but unitary, and
acts as an intertwining operator between the total Hamil-
tonian and the comparison Hamiltonian. The unreliabili-
ty of the singularities of the scattering amplitude as an in-
dicator of the physical spectrum is also brought out.
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The perturbation theory is equally adapted for the ana-
lytic continuation to the spaces §. The resonant states
can be identified as discrete states in §. The entire for-
malism of in and out states and the generalized unitary
Moller matrices can be applied equally well to the analyt-
ic continuations. So when a discrete “particle” state be-
comes unstable by perturbation, in suitable analytic con-
tinuation, we can continue to use perturbation theory.
This method can also be used for determining resonance
energies in interacting systems.

The question of temporal evolution of density matrices
can be handled in terms of the Liouville operator and its
exponentation. The analytic continuation of the second
vector space obtained as the span of the density matrices
is examined and the question of time symmetry is also in-
vestigated. We can again find semigroups of time evolu-
tions, but the original density matrices continue to admit
the full group of time evolutions.

The present formalism of dual spaces is different from
the rigged Hilbert space theory, which also deals with
dual spaces. But the dual spaces are the primary entries
here. Some earlier papers in the literature claiming time
asymmetry obtain their results by introducing unphysical
states with energies unbounded from below. While such
“states” can be constructed from physical states by Hil-
bert transform they are a caricature of the physical state.
Similar constructions with density matrix are also out-
lined and criticized.

The present work is in one sense the completion of the
Heisenberg program to make dynamics out of directly
measured quantities such as spectral frequencies and in-
tensities augments by resonance positions and widths,
and in another sense a minor generalization of the Dirac
formalism of quantum theory in terms of ket and bra vec-
tors. It is instructive that these old ideas contain the
germs of many modern developments.
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